BIOCHEMISTRY, B.S.

Saint Louis University’s Bachelor of Science in biochemistry is designed for students interested in the applications of chemistry to the life sciences. The program prepares students for professional schools such as medicine, dentistry, law and pharmacy. The program provides excellent preparation for students interested in working in biochemistry, molecular biology or biotechnology.

The chemistry department at Saint Louis University places great emphasis on participation in undergraduate research, and majors have ample opportunities to involve themselves in research projects under the close mentorship of a full-time faculty member. Students have the opportunity to use a variety of specialized equipment and computers in their instructional and research laboratories.

The department hosts several social events each year and sponsors a chemistry club for interested students.

Other highlights include:

• A rigorous program that makes graduates competitive for employment in STEM areas.
• Opportunities for students to strengthen their scientific communication skills through research activities that pair an undergraduate with a faculty researcher.
• A unique mentoring program that continues from freshman to senior year, providing guidance and support for students in reaching their professional goals.

Curriculum Overview

• **First year:** General Chemistry 1 and 2, Calculus I and II, Principles of Biology I and II
• **Second year:** Organic Chemistry 1 and 2, Analytical Chemistry 1, Engineering Physics I and II
• **Third year:** Biochemistry 1 and 2, Chemistry Literature, Inorganic Chemistry, Physical Chemistry 1 and 2, Physical Chemistry Lab, undergraduate research
• **Fourth year:** Principles of Genetics, undergraduate research, one chemistry elective

Fieldwork and Research Opportunities

Selected undergraduate students may have opportunities to work with faculty members as laboratory assistants in undergraduate laboratories and receive a stipend.

Benefits of SLU’s biochemistry program also include many internship and career opportunities. Undergraduates who study chemistry at SLU can attend professional meetings and present their research results. In recent years, SLU students have presented numerous talks and poster presentations at regional and national meetings of the American Chemical Society and other scientific conferences.

Careers

Career options in biochemistry include:

• Teaching at the university, college or high school level
• Chemical research and development in industry or government laboratories
• Pharmaceutical research

• Drug discovery and drug development
• Biotechnology
• Environmental research
• Management and administration in the chemical industry
• Chemical and pharmaceutical sales
• Patent law and environmental law
• Opportunities in the public health sector

A Bachelor of Science degree in biochemistry is good preparation for students who want to continue their education in graduate school studying chemistry, biochemistry and health-related areas such as pharmacology and toxicology, as well as in professional school studying medicine, law, pharmacy or dentistry.

Admission Requirements

Begin Your Application (http://www.slu.edu/apply.php)
Saint Louis University also accepts the Common Application.

Freshman

All applications are thoroughly reviewed with the highest degree of individual care and consideration to all credentials that are submitted. Solid academic performance in college preparatory coursework is a primary concern in reviewing a freshman applicant’s file.

To be considered for admission to any Saint Louis University undergraduate program, applicants must be graduating from an accredited high school, have an acceptable HiSET exam score or take the General Education Development (GED) test.

Transfer

Applicants must be a graduate of an accredited high school or have an acceptable score on the GED.

Students who have attempted fewer than 24 semester credits (or 30 quarter credits) of college credit must follow the above freshmen admission requirements. Students who have completed 24 or more semester credits (or 30 quarter credits) of college credit must submit transcripts from all previously attended college(s).

In reviewing a transfer applicant’s file, the Office of Admission holistically examines the student’s academic performance in college-level coursework as an indicator of the student’s ability to meet the academic rigors of Saint Louis University. Where applicable, transfer students will be evaluated on any courses outlined in the continuation standards of their preferred major.

International Applicants

All admission policies and requirements for domestic students apply to international students along with the following:

• Demonstrate English Language Proficiency
• Proof of financial support must include:
 • A letter of financial support from the person(s) or sponsoring agency funding the time at Saint Louis University
 • A letter from the sponsor’s bank verifying that the funds are available and will be so for the duration of study at the University
• Academic records, in English translation, of students who have undertaken postsecondary studies outside the United States must include the courses taken and/or lectures attended, practical laboratory work, the maximum and minimum grades attainable, the
requirements

Scholarships and Financial Aid

There are two principal ways to help finance a Saint Louis University education:

- **Scholarships**: Scholarships are awarded based on academic achievement, service, leadership and financial need.
- **Financial Aid**: Financial aid is provided in the form of grants and loans, some of which require repayment.

For priority consideration for merit-based scholarships, apply for admission by Dec. 1 and complete a Free Application for Federal Student Aid (FAFSA) by March 1.

For information on other scholarships and financial aid, visit the student financial services office online at https://www.slu.edu/financial-aid/.

Accreditation

The Bachelor of Science in Biochemistry has been continuously certified by the American Chemical Society since 2004.

Learning Outcomes

1. Graduates will be able to demonstrate a foundational understanding of organic, inorganic, analytical and physical chemistry, and advanced knowledge in biochemistry.
2. Graduates will be able to demonstrate proficiency of basic (general, organic, analytical and physical) and advanced biochemistry laboratory techniques and conduct laboratory experiments safely.
3. Graduates will be able to collect, interpret and analyze quantitative data.
4. Graduates will be able to communicate scientific results effectively, especially through written reports and oral presentations.
5. Graduates will be able to design and conduct independent research.

Requirements

Biochemistry students must complete a minimum total of 72 credits for the B.S. major.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Requirement</td>
<td></td>
<td>54-63</td>
</tr>
</tbody>
</table>

For additional information about core courses

Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1240 & BIOL 1245</td>
<td>General Biology: Information Flow and Evolution and Principles of Biology I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 1260 & BIOL 1265</td>
<td>General Biology: Transformations of Energy and Matter and Principles of Biology II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3030</td>
<td>Principles of Genetics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1130 & CHEM 1115</td>
<td>General Chemistry 1 for Majors and General Chemistry 1 Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1140 & CHEM 1125</td>
<td>General Chemistry 2 for Majors and General Chemistry 2 Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Non-Course Requirements

All undergraduate majors must complete an exit interview with the department chair during their final semester. B.S. majors are required to submit an undergraduate thesis prior to graduation.

Continuation Standards

The following standards apply to all new freshmen and transfer students:

- Students must earn a "C-" or better in CHEM 1110 General Chemistry 1 or CHEM 1130 General Chemistry 1 for Majors and a "C-" or better in CHEM 1120 General Chemistry 2 or CHEM 1140 General Chemistry 2 for Majors, or the equivalent in transfer.
- Students must earn a "C-" or better in CHEM 2200 Analytical Chemistry 1.
Students who do not earn a "C-" in any of the identified courses must retake the course at SLU in the following semester. If a "C-" is not earned on the second attempt the student will be dismissed from the major. A student who withdraws from one of these courses on the first attempt thus has one more attempt to earn a "C-".

Students must maintain a 2.00 GPA in their major (CHEM) and required related courses (BIOL, PHYS, MATH, etc.) If a student falls below a 2.00 major GPA the student must meet with the undergraduate program director to review their academic performance. If the student cannot raise the major GPA to 2.00 in two semesters, the student will be dismissed from the major.

Bachelor of Science Core Curriculum Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note: beginning in Fall 2022, all incoming SLU undergraduates—regardless of major, program, college or school—will complete the University Core curriculum. You can find more information about SLU's common Core here: https://www.slu.edu/core/index.php (https://www.slu.edu/core/)

Core Components and Credits
- Foundations of Discourse 3
- Diversity in the U.S. 3
- Global Citizenship 3
- Foreign Language 0-6
- Fine Arts 3
- Literature 6
- Mathematics 4
- Science 8
- Philosophy 6
- Social Science 6
- Theology 6
- World History 6

Total Credits 54-60

Graduation Requirements
- Complete a minimum of 120 credits (excluding pre-college level courses numbered below 1000).
- Complete either the College of Arts and Sciences Bachelor of Arts or Bachelor of Science Core Curriculum Requirements.
- Complete major requirements: minimum 30 credits required.
- Complete remaining credits with a second major, minor, certificate, and/or electives to reach the minimum of 120 credits required for graduation.
- Achieve at least a 2.00 cumulative grade point average, a 2.00 grade point average in the major(s) and a 2.00 grade point average in the minor/certificate, or related elective credits.
- Complete department/program-specific academic and performance requirements.
- Complete at least 50% of the coursework for the major and 75% for the minor/certificate through Saint Louis University or an approved study abroad program.
- Complete 30 of the final 36 credits through Saint Louis University or an approved study abroad program.
- Complete an online degree application by the required University deadline.

Roadmap

Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year One

Fall
- CHEM 1130 General Chemistry 1 for Majors 3
- CHEM 1115 General Chemistry 1 Laboratory 1
- MATH 1510 Calculus I 4
- BIOL 1240 General Biology: Information Flow and Evolution 3
- BIOL 1245 Principles of Biology I Laboratory 1

Credits 15

Spring
- CHEM 1140 General Chemistry 2 for Majors 3
- CHEM 1125 General Chemistry 2 Laboratory 1
- MATH 1520 Calculus II 4
- BIOL 1260 General Biology: Transformations of Energy and Matter 3
- BIOL 1265 Principles of Biology II Laboratory 1
- A&S Core 3

Credits 15

Year Two

Fall
- CHEM 2430 Organic Chemistry 1 for Majors 3
- CHEM 2435 Organic Chemistry 1 Lab for Majors 1
- CHEM 2200 Analytical Chemistry I 2
- CHEM 2205 Analytical Chemistry 1 Laboratory 2
- PHYS 1610 University Physics I 3
- PHYS 1620 University Physics I Laboratory 1
- A&S Core 3

Credits 15

Spring
- CHEM 2440 Organic Chemistry 2 for Majors 3
- CHEM 2445 Organic Chemistry 2 Laboratory for Majors 1
- PHYS 1630 University Physics II 3
- PHYS 1640 University Physics II Laboratory 1
- A&S Core 3
- A&S Core 3
- A&S Core 3

Credits 17
<table>
<thead>
<tr>
<th>Year Three</th>
<th>Fall</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHEM 4610</td>
<td>Biochemistry 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 4615</td>
<td>Biochemistry 1 Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHEM 3330</td>
<td>Physical Chemistry 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3100</td>
<td>The Chemical Literature</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A&S Core</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 4620</td>
<td>Biochemistry 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 4625</td>
<td>Biochemistry 2 Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHEM 3340</td>
<td>Physical Chemistry 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3345</td>
<td>Physical Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHEM 3970</td>
<td>Undergraduate Research</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A&S Core</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Year Four</td>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 3970</td>
<td>Undergraduate Research</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BIOL 3030</td>
<td>Principles of Genetics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 4500</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>A&S Core</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Spring</td>
<td>Completion of Exit Interview</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completion of Undergraduate Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 4XXX</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3970</td>
<td>Undergraduate Research</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A&S Core</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Program Notes

Engineering Physics (PHYS 1610 University Physics I (3 cr)-PHYS 1640 University Physics II Laboratory (1 cr)) is recommended. However, Physics (PHYS 1310 College Physics I (3 cr)-PHYS 1340 College Physics II Laboratory (1 cr)) also fulfills the physics requirement.