CHEMISTRY, PH.D.

Saint Louis University's chemistry Ph.D. program offers specializations, including traditional areas of analytical, physical, organic and inorganic chemistry, as well as cross-disciplinary areas of materials and biological chemistry. Students must complete intensive research culminating in a dissertation.

Program Highlights

The chemistry program offers students:

- Close mentoring relationships
- Small research group size
- Opportunities to participate in interdisciplinary research

Graduate students in SLU's Department of Chemistry have access to a number of research tools, including:

- Bruker 400 and 700 MHz NMR spectrometers
- Bruker-EMX EPR, UV-Vis and FTIR spectrometers
- Research-grade spectrofluorometers
- GC-MS and LC-MS
- Electrochemical analyzers
- Gas chromatographs
- A scanning electron micrograph
- Computational facilities with modern molecular software
- A Bruker CCD X-ray diffractometer facility

Curriculum Overview

SLU's Ph.D. in chemistry requires a minimum of 39 post-baccalaureate credits, with at least 24 credits of coursework and 12 credits of dissertation research.

Fieldwork and Research Opportunities

Our graduate students are active in the research areas of analytical, organic, physical, synthetic, materials, environmental and biological chemistry. Our research groups regularly publish in top-ranked journals and present at national and international conferences.

Research is externally supported by the U.S. Air Force Office of Scientific Research, National Institutes of Health, National Science Foundation, Petroleum Research Fund, and the American Heart Association, among others.

Careers

Doctoral graduates pursue different paths, including teaching, postdoctoral studies, or careers in industry or with government agencies, such as the FDA.

Past students from SLU's chemistry Ph.D. program have gone on to careers as research scientists, teachers, university faculty, and in various capacities in pharmaceutical companies and government agencies.

Admission Requirements

Applicants should possess sufficient GPA and TOEFL (if applicable) scores and a bachelor's degree from an accredited college or university.

Bachelor's degrees usually are in chemistry or biochemistry, although other science majors will be considered.

Admission normally requires a minimum of 18-semester credits (minimum 2.8 GPA) of upper-division undergraduate chemistry courses including organic chemistry (two semesters), quantitative analysis (one semester) and physical chemistry (two semesters). Students who do not meet these criteria may complete these prerequisites as part of their graduate program, though not for graduate credit.

Students who have not completed equivalent coursework in upper-level undergraduate "Inorganic Chemistry" and "Instrumental Analysis" will also be required to complete these courses but they can be taken for departmental graduate credit.

Application Requirements

- Application form and fee
- Three letters of recommendation
- Résumé
- Goal statement
- Interview (desired)

Requirements for International Students

All admission policies and requirements for domestic students apply to international students along with the following:

- Demonstrate English Language Proficiency
- Proof of financial support must include:
 - A letter of financial support from the person(s) or sponsoring agency funding the time at Saint Louis University
 - A letter from the sponsor's bank verifying that the funds are available and will be so for the duration of study at the University
- Academic records, in English translation, of students who have undertaken postsecondary studies outside the United States must include the courses taken and/or lectures attended, practical laboratory work, the maximum and minimum grades attainable, the grades earned or the results of all end-of-term examinations, and any honors or degrees received. WES and ECE transcripts are accepted.

Application Deadlines

Students who want to be considered for the summer and fall semesters must submit their application by Jan. 15. Students who want to be considered for the spring semester should apply by Oct. 1.

Review Process

A three-person committee votes whether to accept applicants.

Scholarships, Assistantships and Financial Aid

For priority consideration for a graduate assistantship, apply by the program admission deadlines listed. Fellowships and assistantships provide a stipend and may include health insurance and a tuition scholarship for the duration of the award.

For more information, visit http://www.slu.edu/financial-aid (http://www.slu.edu/financial-aid/).

Learning Outcomes

1. Graduates will be able to demonstrate advanced level knowledge in both
a. synthesis and materials chemistry and
b. analytical and physical chemistry methods, with a higher level of
knowledge expected in the student’s area of research.

2. Graduates will be able to use standard search tools and retrieval
methods to obtain information about a topic, substance, technique,
or an issue relating to chemistry and assess relevant studies from the
chemical literature.

3. Graduates will be able to communicate scientific findings from
literature and original findings from the student’s own independent
research in written publications and oral presentations.

4. Graduates will be able to acquire the basic tools, including chemical
practices and theories, needed to conduct advanced chemical
research. Students will become proficient in their specialized area of
chemistry and complete an advanced, independent research project
resulting in peer-reviewed publications.

5. Graduates will be able to adhere to accepted ethical and professional
standards in chemistry.

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis and Materials Chemistry Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CHEM 5160</td>
<td>Advanced Synthetic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 5400</td>
<td>Organic Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>CHEM 5440</td>
<td>Bioorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 5450</td>
<td>Advanced Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 5460</td>
<td>Synthetic Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 5470</td>
<td>Principles of Medicinal Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 5500</td>
<td>Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 5550</td>
<td>Organometallic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 5560</td>
<td>Solid State Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 5610</td>
<td>Biochemistry 1</td>
<td></td>
</tr>
<tr>
<td>CHEM 5615</td>
<td>Biochemistry 2</td>
<td></td>
</tr>
<tr>
<td>CHEM 5800</td>
<td>Fundamentals and Design of Nanomaterials</td>
<td></td>
</tr>
</tbody>
</table>

Analytical and Physical Methods Courses		
Select two of the following:	6	
CHEM 5200	Analytical Chemistry II	
CHEM 5230	Mass Spectrometry	
CHEM 5260	Analytical Separations	
CHEM 5270	Electroanalytical Chemistry	
CHEM 5300	Mathematical Techniques in Chemistry	
CHEM 5370	Computational Chemistry	
CHEM 5390	Special Topics: Physical Chemistry	
CHEM 5450	Advanced Organic Chemistry	
CHEM 5570	Group Theory & Spectroscopy	
CHEM 5620	Biophysical Chemistry	
CHEM 5630	Introduction to Chemical Biology and	
Biotechnology		
CHEM 5800	Fundamentals and Design of Nanomaterials	

Required Research Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 5970</td>
<td>Research Topics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 6900</td>
<td>Introduction to Proposal Writing and Oral Presentations</td>
<td>3</td>
</tr>
</tbody>
</table>

Research Elective Courses		
Select one of the following:	3	
CHEM 5299	Introduction to Analytical Research	
CHEM 5399	Introduction to Physical Research	
CHEM 5499	Introduction to Organic Research	
CHEM 5599	Introduction to Inorganic Research	

Chemistry Elective

Chemistry courses listed above for synthesis and materials
chemistry or analytical and physical methods. Electives can also
be fulfilled by taking 5000-level courses in other disciplines such as
biology, math, computer science, engineering, and pharmacology with
approval by Graduate Program Coordinator and student’s committee.

Total Credits 39

Non-Course Requirements

- Completion of research progress exam
- Completion of written comprehensive exam
- Completion of oral defense of research proposal
- A public oral presentation and a private oral examination

Continuation Standards

Students must maintain a cumulative grade point average (GPA) of 3.00
in all graduate/professional courses.

Roadmap

Roadmaps are recommended semester-by-semester plans of study for
programs and assume full-time enrollment unless otherwise noted.

Courses and milestones designated as critical (marked with !) must be
completed in the semester listed to ensure a timely graduation. Transfer
credit may change the roadmap.

This roadmap should not be used in the place of regular academic
advising appointments. All students are encouraged to meet with their
advisor/mentor each semester. Requirements, course availability and
sequencing are subject to change.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year One</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Synthesis & Materials Chemistry course (p. 3)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Analytical & Physical Methods course (p. 3)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 5X99</td>
<td>Introduction to Research</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>9</td>
</tr>
<tr>
<td>Spring</td>
<td>Synthesis & Materials Chemistry course (p. 3)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Analytical & Physical Methods course (p. 3)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Summer</td>
<td>Synthesis & Materials Chemistry course (p. 3)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Analytical & Physical Methods course (p. 3)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CHEM 5970</td>
<td>Research Topics</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>3</td>
</tr>
</tbody>
</table>
Year Two

Fall
Chemistry electives (p. 3) 3-6 Credits 3-6

Spring
Completion of Research Progress Exam
Chemistry electives (p. 3) 3-0 Credits 3-0

Summer
CHEM 6990 Dissertation Research (See information in Program Notes) 3 Credits 3

Year Three

Fall
Completion of Written Comprehensive Exam
CHEM 6900 Introduction to Proposal Writing and Oral Presentations 3
CHEM 6990 Dissertation Research † 1 Credits 4

Spring
CHEM 6990 Dissertation Research † 2 Credits 2

Summer
CHEM 6990 Dissertation Research † 1 Credits 1

Year Four

Fall
CHEM 6990 Dissertation Research † 1 Credits 1

Spring
CHEM 6990 Dissertation Research † 1 Credits 1

Summer
CHEM 6990 Dissertation Research † 1 Credits 1

Year Five

Fall
CHEM 6990 Dissertation Research † 1 Credits 1

Spring
CHEM 6990 Dissertation Research † 1 Credits 1

Total Credits 39

† Students are required to complete a minimum of 12 credits of dissertation research. The number of credits can vary each semester, but a student cannot register for zero credits of research until the 12 credits have been completed.

Program Notes

Synthesis and Materials Chemistry Courses
Must take two courses.

Analytical and Physical Methods Courses
Must take two courses.

Chemistry Electives
Must take at least two courses.

Chemistry courses listed above for synthesis and materials chemistry or analytical and physical methods. Electives can also be fulfilled by taking 5000-level courses in other disciplines such as biology, math, computer science, engineering, and pharmacology with approval by the graduate program coordinator and the student’s committee.

Contact Us
For additional information about our program, please contact:

Dana Baum, Ph.D.
Chemistry Graduate Program Coordinator
chemgrad@slu.edu