MATHEMATICS, B.S.

Saint Louis University's mathematics program combines the features of both small and large schools to create a compelling educational experience. Students can expect a student-friendly environment, with math courses for majors being small in size and taught by regular faculty. Faculty get to know students and provide individual attention. Students are recruited for participation in math contests and other opportunities, including part-time positions as graders, tutors and learning assistants. Like a large school's program, math at SLU also has enough breadth to let students tailor their upper-division math courses to their interests and goals.

Program highlights include:

• Students interested in pure mathematics can choose theoretical courses that provide solid preparation for graduate school. Since SLU has a graduate program in mathematics, exceptional undergraduate students have the opportunity to take graduate courses in mathematics.
• Students interested in applied mathematics (or science and engineering students interested in a second major in mathematics) can focus on a wide selection of applied courses.
• Students interested in statistics can select various courses in statistics and probability theory.
• Students interested in secondary school teaching can select courses that fill the requirements of the major and of a teaching certificate at the same time.

Curriculum Overview

All students majoring in mathematics start with a core of five required courses, including calculus and linear algebra. The B.S. in Mathematics is designed to provide a strong grounding in mathematics for students considering graduate school in mathematics or a closely allied field.

For the B.S. degree, the student builds on the fundamental core of required courses with a selection of nine upper-division courses, chosen to include pure mathematics courses in real analysis and algebra, an upper-level statistics course, two upper-division sequences including one in pure mathematics, and electives to complete the required nine upper-division courses. Students must also take at least one course in computer programming and one in another discipline with a strong mathematical or computational component.

The requirements for the B.S. in Mathematics follow the recommendations of the Mathematics Association of America for degree programs in mathematics that prepare students for graduate work.

Fieldwork and Research Opportunities

The SLU Mathematics and Computer Science Club gives students interested in mathematics and computers a chance to explore relevant topics outside of the classroom. The club holds weekly meetings that bring students and faculty together for various activities, including mathematical puzzles, integration bees, game beta testing and career-focused presentations by industry experts.

Careers

Mathematics emphasizes careful reasoning, along with the analysis and solution of problems. A major or minor in mathematics at Saint Louis University will appeal to students who like to develop their problem-solving and analytical thinking skills. For this reason, mathematics is also an appropriate major for students planning careers in law or medicine.

Graduates in mathematics and statistics are versatile. They enter jobs in business, industry, medicine, government and education. Mathematicians, statisticians, data scientists, actuaries, analysts and consultants are in high demand and lead rewarding and well-compensated careers.

Many of our graduates pursue advanced degrees in mathematics, statistics or other fields. Students with mathematics and statistics degrees are attractive to professional graduate schools in law, medicine, and business because these graduate programs value analytical skills and the ability to work in a problem-solving environment.

Some of the industry and government employers where our graduates have found success include:

• Allstate
• Ameren
• Boeing
• Booz Allen Hamilton Consulting
• Boston Scientific
• Cofactor Genomics
• Georgia-Pacific
• Kemper Insurance
• Mercer
• MetLife
• Milliman
• National Geospatial-Intelligence Agency
• National Security Agency
• NISA Investment Advisors
• Varsity Tutors

Admission Requirements

Begin Your Application (http://www.slu.edu/apply.php)

Saint Louis University also accepts the Common Application.

Freshman

All applications are thoroughly reviewed with the highest degree of individual care and consideration to all credentials that are submitted. Solid academic performance in college preparatory coursework is a primary concern in reviewing a freshman applicant's file.

To be considered for admission to any Saint Louis University undergraduate program, applicants must be graduating from an accredited high school, have an acceptable HiSET exam score or take the General Education Development (GED) test.

Transfer

Applicants must be a graduate of an accredited high school or have an acceptable score on the GED.

Students who have attempted fewer than 24 semester credits (or 30 quarter credits) of college credit must follow the above freshmen admission requirements. Students who have completed 24 or more semester credits (or 30 quarter credits) of college credit must submit transcripts from all previously attended college(s).
In reviewing a transfer applicant’s file, the Office of Admission holistically examines the student’s academic performance in college-level coursework as an indicator of the student’s ability to meet the academic rigors of Saint Louis University. Where applicable, transfer students will be evaluated on any courses outlined in the continuation standards of their preferred major.

International Applicants

All admission policies and requirements for domestic students apply to international students along with the following:

- Demonstrate English Language Proficiency
- Proof of financial support must include:
 - A letter of financial support from the person(s) or sponsoring agency funding the time at Saint Louis University
 - A letter from the sponsor’s bank verifying that the funds are available and will be so for the duration of study at the University
- Academic records, in English translation, of students who have undertaken postsecondary studies outside the United States must include the courses taken and/or lectures attended, practical laboratory work, the maximum and minimum grades attainable, the grades earned or the results of all end-of-term examinations, and any honors or degrees received. WES and ECE transcripts are accepted.

Scholarships and Financial Aid

There are two principal ways to help finance a Saint Louis University education:

- **Scholarships**: Scholarships are awarded based on academic achievement, service, leadership and financial need.
- **Financial Aid**: Financial aid is provided in the form of grants and loans, some of which require repayment.

For priority consideration for merit-based scholarships, apply for admission by Dec. 1 and complete a Free Application for Federal Student Aid (FAFSA) by March 1.

For information on other scholarships and financial aid, visit www.slu.edu/financial-aid.

Learning Outcomes

1. Graduates will be able to demonstrate conceptual competency in foundational areas of mathematics by developing problem-solving skills and solving problems in these areas of mathematics.
2. Graduates will be able to demonstrate an ability to write and comprehend mathematical proofs using both direct and indirect methods.
3. Graduates will be able to demonstrate an ability to analyze data and perform appropriate statistical analyses.
4. Graduates will be able to demonstrate an ability to write computer programs that implement mathematical or statistical algorithms.
5. Graduates will be able to demonstrate an ability to communicate mathematical ideas and concepts both orally and in writing.
6. Graduates will be able to demonstrate an understanding of at least two advanced, in-depth topics in mathematics or statistics, including at least one topic in pure mathematics.

Requirements

Mathematics students must complete a minimum total of 51 credits for the major.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>University Undergraduate Core</td>
<td></td>
</tr>
<tr>
<td>MATH 1510</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1520</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2530</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2660</td>
<td>Principles of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3120</td>
<td>Introduction to Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Computer Programming Requirement</td>
<td></td>
</tr>
<tr>
<td>CSCI 1060</td>
<td>Introduction to Computer Science: Scientific Programming</td>
<td>3-4</td>
</tr>
<tr>
<td>or CSCI 1300</td>
<td>Introduction to Object-Oriented Programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper Division Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students then take an additional nine upper division mathematics courses, and an allied elective meeting the distribution requirements below. A 2.00 or “C” GPA is required in upper division mathematics courses counting toward the major.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pure Mathematics Requirements</td>
<td></td>
</tr>
<tr>
<td>MATH 4110</td>
<td>Introduction to Abstract Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4210</td>
<td>Introduction to Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Statistics Requirement</td>
<td></td>
</tr>
<tr>
<td>STAT 3850</td>
<td>Foundation of Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sequence Requirement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students must complete two sequences, one of which must be either the algebra sequence or the analysis sequence.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential Equations Sequence</td>
<td>6</td>
</tr>
<tr>
<td>MATH 3550</td>
<td>Differential Equations</td>
<td></td>
</tr>
<tr>
<td>And one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4550</td>
<td>Nonlinear Dynamics and Chaos</td>
<td></td>
</tr>
<tr>
<td>or MATH 4570</td>
<td>Partial Differential Equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistics Sequence</td>
<td></td>
</tr>
<tr>
<td>STAT 3850</td>
<td>Foundation of Statistics</td>
<td>3</td>
</tr>
<tr>
<td>And one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4800</td>
<td>Probability Theory</td>
<td></td>
</tr>
<tr>
<td>or STAT 4840</td>
<td>Time Series</td>
<td></td>
</tr>
<tr>
<td>or STAT 4870</td>
<td>Applied Regression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algebra Sequence</td>
<td></td>
</tr>
<tr>
<td>MATH 4110</td>
<td>Introduction to Abstract Algebra</td>
<td></td>
</tr>
<tr>
<td>And one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4120</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>or MATH 4150</td>
<td>Number Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis Sequence</td>
<td></td>
</tr>
<tr>
<td>MATH 4210</td>
<td>Introduction to Analysis</td>
<td></td>
</tr>
<tr>
<td>And one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4220</td>
<td>Metric Spaces</td>
<td></td>
</tr>
<tr>
<td>or MATH 4230</td>
<td>Multivariable Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complex Analysis Sequence</td>
<td></td>
</tr>
<tr>
<td>MATH 4310</td>
<td>Introduction to Complex Variables</td>
<td></td>
</tr>
<tr>
<td>And one of the following:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continuation Standards

Students must have a minimum of a 2.00 cumulative GPA in their mathematics major or minor courses by the conclusion of their sophomore year, must maintain a minimum of 2.00 cumulative GPA in these courses at the conclusion of each semester thereafter, and must be registered in at least one course counting toward their major or minor in each academic year (until all requirements are completed).

Graduation Requirements

- Complete a minimum of 120 credits (excluding pre-college level courses numbered below 1000).
- Complete the University Undergraduate Core curriculum requirements.
- Complete major requirements: minimum 30 credits required.
- Complete remaining credits with a second major, minor, certificate and/or electives to reach the minimum of 120 credits required for graduation.
- Achieve at least a 2.00 cumulative grade point average, a 2.00 grade point average in the major(s) and a 2.00 grade point average in the minor/certificate, or related elective credits.
- Complete department/program-specific academic and performance requirements.
- Complete at least 50% of the coursework for the major and 75% for the minor/certificate through Saint Louis University or an approved study abroad program.
- Complete 30 of the final 36 credits through Saint Louis University or an approved study abroad program.
- Complete an online degree application by the required University deadline.

Roadmap

Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1510</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>UNIV 1010</td>
<td>Enhancing First-Year Success</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>University Core and/or General Electives</td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1520</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Programming Course ¹</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>University Core and/or General Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>16-17</td>
</tr>
</tbody>
</table>

¹ Programming Course must be an approved course with no more than 3 credits for credit (paying attention to other prerequisites).
Year Two

Fall
MATH 2530 Calculus III 4
MATH 2660 Principles of Mathematics 3
University Core and/or General Electives 9
Credits 16

Spring
MATH 3120 Introduction to Linear Algebra 3
STAT 3850 Foundation of Statistics 3
University Core and/or General Electives 9
Credits 15

Year Three

Fall
MATH 4110 Introduction to Abstract Algebra 3
Mathematics or Statistics Elective 2
University Core and/or General Electives 9
Credits 15

Spring
Pure Mathematics Elective 3
Mathematics or Statistics Elective 2
University Core and/or General Electives 9
Credits 15

Year Four

Fall
Mathematics or Statistics Sequence 4
MATH 4210 Introduction to Analysis 3
Allied Elective 5
University Core and/or General Electives 6
Credits 15

Spring
Mathematics or Statistics Sequence 4
Mathematics or Statistics Elective 2
University Core and/or General Electives 9
Credits 15

Total Credits 120-121

1 See note below about the programming requirement.
2 See note below about mathematics and statistics electives.
3 See note below about the pure mathematics sequence requirement.
4 See note below about mathematics and statistics sequences.
5 See note below about allied electives.

Program Notes

Programming Requirement
CSCI 1060 Introduction to Computer Science: Scientific Programming (3 cr) or CSCI 1300 Introduction to Object-Oriented Programming (4 cr) (with attention paid to prerequisites).

Mathematics and Statistics Elective
Any 3000- or 4000-level MATH or STAT course numbered higher than MATH 3120 Introduction to Linear Algebra (3 cr).

Pure Mathematics Sequence
Students can satisfy the pure mathematics sequence requirement by completing either the algebra sequence or real analysis sequence, as defined below.

Mathematics and Statistics Sequences
Students must complete a second sequence in addition to the pure mathematics sequence, chosen from the following list.

1. Algebra Sequence: MATH 4110 Introduction to Abstract Algebra (3 cr) and either MATH 4120 Linear Algebra (3 cr) or MATH 4150 Number Theory (3 cr).
2. Complex Analysis Sequence: MATH 4310 Introduction to Complex Variables (3 cr) and either MATH 4320 Complex Variables II (3 cr) or MATH 4360 Geometric Topology (3 cr).
3. Differential Equations Sequence: MATH 3550 Differential Equations (3 cr) and either MATH 4550 Nonlinear Dynamics and Chaos (3 cr) or MATH 4570 Partial Differential Equations (3 cr).
4. Real Analysis Sequence: MATH 4210 Introduction to Analysis (3 cr) and one of either MATH 4220 Metric Spaces (3 cr) or MATH 4230 Multivariable Analysis (3 cr).
5. Statistics Sequence: STAT 3850 Foundation of Statistics (3 cr) and one of: MATH 4800 Probability Theory (3 cr), STAT 4840 Time Series (3 cr), or STAT 4870 Applied Regression (3 cr).

Allied Elective
A course in another discipline that has a strong mathematical or computational component. Appropriate courses are available in computer science, economics, physics and other science and engineering disciplines. This course cannot be used to satisfy any of the other requirements for a B.S. degree. See the Course Catalog for a list and description of acceptable courses.