CIVIL ENGINEERING, B.S.

The civil engineering program offered at Saint Louis University’s Parks College of Engineering, Aviation and Technology is future-focused, incorporating the latest trends in civil engineering to address the current and future needs of the profession and society.

Graduates are well-prepared to enter professional practice and have the comprehensive skill set and leadership background needed to address society’s needs at the local, regional and global level. SLU’s civil engineering curriculum emphasizes professional practice preparation using project-based, hands-on learning methods.

Some of the student organizations available for civil engineering majors to join include:

- American Society of Civil Engineers: A distinguished professional organization representing the civil engineering profession.
- Engineers Without Borders: Uses engineering as a way to help improve the lives of those living in economically developing nations.

Curriculum Overview

SLU’s civil engineering program provides a solid foundation of coursework in the engineering sciences, including solid mechanics and fluid dynamics. The program also includes courses related to structural, environmental, geotechnical, hydraulic and transportation engineering.

Modern and well-equipped laboratories emphasize experimental methods and measurement techniques.

SLU’s civil engineering program includes the following primary focus areas:

- Green and sustainable design
- Infrastructures design, evaluation and restoration
- Transportation planning, modeling and design
- Hydraulic and water resources modeling and design

In addition, civil engineering majors at SLU are exposed to entrepreneurship and the entrepreneurial mindset through the curriculum and extracurricular opportunities.

Fieldwork and Research Opportunities

Benefits of SLU’s civil engineering program include several internship and career opportunities. Competitive summer internships are available within the industry and with government agencies. Independent study on a civil engineering topic can be arranged under the direction of a faculty member.

Located in the heart of St. Louis, SLU offers civil engineering students access to a number of industry contacts from around the area. This allows students to easily partake in internships during the school year and network with professionals before graduation. Plus, SLU’s civil engineering faculty are very active in research and there are many opportunities for students to help conducting research during the academic year and summer.

SLU’s modern and well-equipped laboratories emphasize experimental methods and measurement techniques. The civil engineering laboratory facilities include a variety of equipment and provide spaces specifically designated for soil mechanics, environmental engineering, construction materials testing, hydraulic modeling, and structural testing. Students in SLU’s civil engineering program may specialize in areas such as infrastructure evaluation and design, transportation analysis and planning, and green engineering and sustainable design.

Careers

After graduation, students with a B.S. in civil engineering can pursue graduate study or enter one of the most dynamic industries in the United States. Industry and government agencies have long recognized the quality of engineering graduates from Parks College.

A few of the places where civil engineering graduates can find opportunities include:

- Missouri and Illinois departments of transportation
- Missouri Sewer District
- State, county and municipal engineering offices
- The Army Corps of Engineers
- Private engineering firms such as Black and Veatch, Parsons, etc.
- Construction companies
- U.S. Air Force, Army and Navy

Admission Requirements

Freshman

Begin your application for this program at www.slu.edu/apply. Saint Louis University also accepts the Common App.

All applications are thoroughly reviewed with the highest degree of individual care and consideration to all credentials that are submitted. Solid academic performance in college preparatory course work is a primary concern in reviewing a freshman applicant’s file. College admission test scores (ACT or SAT) are used as an additional indicator of the student’s ability to meet the academic rigors of Saint Louis University and are used as qualifiers for certain University scholarship programs. To be considered for admission to any Saint Louis University undergraduate program, the applicant must be graduating from an accredited high school or have an acceptable score on the General Education Development (GED) test.

Begin Your Application (http://www.slu.edu/apply.php)

Transfer

Begin your application for this program at www.slu.edu/apply.

Applicants must be a graduate of an accredited high school or have an acceptable score on the GED. An official high school transcript and official test scores are required only of those students who have attempted fewer than 24 transferable semester credits (or 30 quarter credits) of college credit. Those having completed 24 or more of college credit need only submit a transcript from previously attended college(s). In reviewing a transfer applicant’s file, the office of admission holistically examines the student’s academic performance in college-level coursework as an indicator of the student’s ability to meet the academic rigors of Saint Louis University.

International Applicants

Begin your application for this program at www.slu.edu/apply.

All admission policies and requirements for domestic students apply to international students along with the following:
• Demonstrate English Language Proficiency (http://catalog.slu.edu/academic-policies/office-admission/undergraduate/english-language-proficiency)
• Proof of financial support must include:
 • A letter of financial support from the person(s) or sponsoring agency funding the time at Saint Louis University
 • A letter from the sponsor’s bank verifying that the funds are available and will be for the duration of study at the University
• Academic records, in English translation, of students who have undertaken postsecondary studies outside the United States must include the courses taken and/or lectures attended, practical laboratory work, the maximum and minimum grades attainable, the grades earned or the results of all end-of-term examinations, and any honors or degrees received. WES and ECE transcripts are accepted.

Additional Admission Requirements
In addition to the general admission and matriculation requirements of the University, Parks College engineering programs have the following additional requirements:

• GPA: Minimum cumulative 3.00 high school GPA for freshmen applicants and 2.70 college GPA for transfer applicants.
• ACT/SAT: ACT composite score of 24 or higher, or SAT composite score of 1160 or higher. ACT sub scores minimums of 22 in English, 24 in Mathematics, 22 in Reading Comprehension and 22 in Scientific Reasoning, or SAT Math sub score of 620.
• Coursework: Fifteen total units of high school work are required: three or four units of English; four or more units of mathematics including algebra I and II, geometry and precalculus (Algebra II with Trigonometry is not sufficient). Students should be prepared to start the first semester freshmen year in Calculus I or higher; three or four units of science including general science, introduction to physical science, earth science, biology, physics or chemistry; two or three units of social sciences including history, psychology or sociology; and three units of electives.

Admission requirements to Parks College of Engineering, Aviation and Technology degree programs are based on a combination of secondary school grades, college admission test scores, co-curricular activities and attempted college course work, as well as other indicators of the applicant’s ability, career focus and character. This process respects the non-discrimination policy of the University and is designed to select a qualified, competent and diverse student body with high standards of scholarship and character, consistent with the mission of the University.

Scholarships and Financial Aid
There are two principal ways to help finance a Saint Louis University education:

• Scholarships: awarded based on academic achievement, service, leadership and financial need.
• Financial Aid: provided in the form of grants and loans, some of which require repayment.

For priority consideration for merit-based scholarships, applicants should apply for admission by Dec. 1 and complete a Free Application for Federal Student Aid (FAFSA) by March 1.

For information on other scholarships and financial aid, visit the student financial services office online at https://finaid.slu.edu.

Accreditation

Enrollment and graduation data for civil engineering is listed here (https://www.slu.edu/parks/pdfs/civil-engineering-enrollment-and-graduation-data.pdf)

Learning Outcomes
The undergraduate civil engineering program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org).

Program Educational Objectives
The undergraduate program is designed to meet the following specific objectives in order to fulfill the departmental and institutional missions.

• Be employed as engineers or be enrolled in engineering or professional graduate school;
• Demonstrate their commitment to life-long learning and professional development through seeking professional licensure, pursuing graduate studies, or participating in other professional continuing education activities;
• Advance into leadership roles in their profession and in service to their communities; and
• Create design solutions that address economic, social, and environmental factors in their professional engineering practice.

Student Outcomes
Graduates of the Civil Engineering program at Saint Louis University will demonstrate:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics;
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors;
3. an ability to communicate effectively with a range of audiences;
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts;
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives;
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions;
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies;
8. an ability to apply knowledge of four technical areas appropriate to civil engineering;
9. an ability to explain basic concepts in management, business, public policy, and leadership; and explain the importance of professional licensure.
Requirements

Basic Science and Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1110</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 1115</td>
<td>and General Chemistry I Laboratory</td>
<td></td>
</tr>
<tr>
<td>PHYS 1610</td>
<td>Engineering Physics I</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 1620</td>
<td>and Engineering Physics I Laboratory</td>
<td></td>
</tr>
<tr>
<td>MATH 1510</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1520</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2530</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3550</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3850</td>
<td>Foundation of Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Math/Science Electives

Select seven credits in Math or Science

- ENGL 1920 Advanced Writing for Professionals 3
- CMM 2200 Small Group Presentation 1

Liberal Arts

- THEO 1000 Theological Foundations 3
- PHIL 3400 Ethics & Engineering 3
- Humanistic Values Electives 6
- Cultural Diversity Elective 3

Written and Oral Communication

- ESCL 2100 Statics 3
- ESCL 2150 Dynamics 3
- ESCL 3100 Mechanics of Solids 4
- & ESCL 3101 and Mechanics of Solids Lab 4
- ESCL 3200 Fluid Dynamics 4
- & ESCL 3201 and Fluid Dynamics Laboratory 4

Civil Engineering Courses

- CVNG 1010 Freshman Engineering I 1
- CVNG 1020 Freshman Engineering II 1
- CVNG 1500 Civil Engineering Computing 3
- CVNG 2010 GIS and Surveying in Civil Engineering 4
- & CVNG 2020 and GIS and Surveying in Civil Engineering Lab 4
- CVNG 3010 Structural Analysis 4
- & CVNG 3020 and Structural Analysis Lab 4
- CVNG 3030 Civil Engineering Materials 3
- CVNG 3040 Sustainability and Environmental Engineering 4
- & CVNG 3041 and Sustainability and Environmental Engineering Lab 4
- CVNG 3070 Engineering Project Management 2
- CVNG 3090 Geotechnical Engineering 4
- & CVNG 3100 and Geotechnical Engineering Lab 4
- CVNG 3110 Transportation Engineering 4
- & CVNG 3120 and Transportation Engineering Lab 4
- CVNG 3130 Hydraulic Engineering 4
- & CVNG 3140 and Hydraulic Engineering Lab 4
- CVNG 3150 Intro to Structural Design 4
- & CVNG 3160 and Structural Design Lab 4
- CVNG 4500 Capstone Design I 3
- CVNG 4510 Capstone Design II 3

Civil Engineering Electives

Select nine (9) credits of Civil Engineering Electives are required from the available offerings above a 3000 level courses in our program. Some of the available civil engineering electives are:

- CVNG 4030 Foundation Engineering
- CVNG 4050 Advanced Structural Analysis
- CVNG 4070 Structural Dynamics
- CVNG 4090 Advanced Reinforced Concrete
- CVNG 4110 Advanced Steel Design
- CVNG 4130 Bridge Engineering
- CVNG 4150 Prestressed Concrete
- CVNG 4190 Sustainable Land Development Engineering
- CVNG 4210 Sustainable Water Resources Management
- CVNG 4330 Open-Channel Flow
- CVNG 4350 Hydraulic Modeling
- CVNG 4370 River Engineering
- CVNG 4450 Traffic Engineering
- CVNG 4470 Urban Transportation Planning

Professional Development Electives

Select six (6) credits of Professional Development Electives are required, typically upper level. They can be non-engineering courses, but must support professional development goals. Courses can be selected from pre-approved elective tracks or students can develop individualized plans with departmental approval.

Total Credits

125

1 The Math and Science elective cannot be a prerequisite course for required courses in the curriculum. Either BIOL 1240 Principles of Biology I (3 cr)/BIOL 1245 Principles of Biology I Laboratory (1 cr) or an EAS course (or both) must be taken to satisfy the ABET basic science requirement.

Acceptable EAS courses include: EAS 1010 Earth Systems I-The Solid Earth (3 cr)/EAS 1020 Earth's Environment I Lab (1 cr), EAS 1030 Earth's Dynamic Environment II (3 cr)/EAS 1040 Earth's Environment II Lab (1 cr), EAS 1050 Introduction to Oceanography (1.3 cr), EAS 1090 Climate Change (3 cr), EAS 2300 Geology for Engineers (3 cr), EAS 2110 Meteorological Analysis (3 cr), EAS 2440 Atmospheric Processes and Systems (3 cr), or EAS 2530 Fundamentals of Climate Systems (3 cr).

Courses for non-science majors and engineering courses will not be accepted. Contact the Faculty Mentor for approval of the Math/Science Electives choices.

2 Humanities courses shall be chosen from: Humanities or Social & Behavioral Science.

- Humanities courses include: Fine Arts (excludes applied, studio, and performance courses), Literature, History, American Studies and Foreign Languages (excludes English or native language), Philosophy, or Theology.

- Social & Behavioral Sciences courses (3-credit) include: Anthropology, Communication, Communication Sciences and Disorders, Economics, Education, Political Science, Psychology, Social Work, Sociology, Criminology and Criminal Justice and Public Health

3 Cultural Diversity elective courses must be selected from an approved Arts & Sciences list. See the description of the Parks College core above for more information.
Six (6) credits of Professional Development Electives are required, typically upper level. Courses can be non-engineering courses but must support professional development goals. Courses can be selected from pre-approved elective tracks or students can develop individualized plans with departmental approval.

Continuation Standards

- Students must maintain a minimum 2.00 GPA.

Roadmap

Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

Year One

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CVNG 1010</td>
<td>Freshman Engineering I</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHEM 1110</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CHEM 1115</td>
<td>and General Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 1920</td>
<td>Advanced Writing for Professionals</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1510</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>THEO 1000</td>
<td>Theological Foundations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>CVNG 1020</td>
<td>Freshman Engineering II</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CVNG 1500</td>
<td>Civil Engineering Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1520</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 1610</td>
<td>Engineering Physics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 1620</td>
<td>Engineering Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Humanistic Values Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Year Two

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>! CVNG 2010 & CVNG 2020</td>
<td>GIS and Surveying in Civil Engineering and GIS and Surveying in Civil Engineering Lab</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CMM 2200</td>
<td>Small Group Presentation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Science Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESCI 2100</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2530</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>ESCI 2150</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ESCI 3100</td>
<td>Mechanics of Solids</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& ESCI 3101</td>
<td>and Mechanics of Solids Lab</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 3550</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 3850</td>
<td>Foundation of Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Year Three

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>! CVNG 3010 & CVNG 3020</td>
<td>Structural Analysis and Structural Analysis Lab</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>! CVNG 3030</td>
<td>Civil Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>! CVNG 3040 & CVNG 3041</td>
<td>Sustainability and Environmental Engineering and Sustainability and Environmental Engineering Lab</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>! CVNG 3070</td>
<td>Engineering Project Management</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ESCI 3200</td>
<td>Fluid Dynamics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& ESCI 3201</td>
<td>and Fluid Dynamics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>! CVNG 3090 & CVNG 3100</td>
<td>Geotechnical Engineering and Geotechnical Engineering Lab</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>! CVNG 3110 & CVNG 3120</td>
<td>Transportation Engineering and Transportation Engineering Lab</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>! CVNG 3130 & CVNG 3140</td>
<td>Hydraulic Engineering and Hydraulic Engineering Lab</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>! CVNG 3150 & CVNG 3160</td>
<td>Intro to Structural Design and Structural Design Lab</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Year Four

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>! CVNG 4500</td>
<td>Capstone Design I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHIL 3400</td>
<td>Ethics & Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>! CVNG 4510</td>
<td>Capstone Design II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cultural Diversity Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanistic Values Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil Engineering Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Development Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>! CVNG 4510</td>
<td>Capstone Design II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cultural Diversity Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanistic Values Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil Engineering Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Development Electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credits: 125

1. ESC 1010 Freshman Engineering I (1 cr), MENG 1001 Introduction to Aerospace & Mechanical Engineering (1 cr) or MENG 1002 Computer-Aided Engineering Design (1 cr) are acceptable for transfer credit. External transfer students may substitute with equivalent course transferred.
2. Requires one year of high school chemistry with a grade of “C” or better and Pre-Calculus placement. Transfer credit can be given for CHEM 1070/1075.
3. Enrollment in this course is based on your SAT or ACT score in English. Students can take ENGL 1900 Advanced Strategies Of Rhetoric and Research (3 cr) in lieu of ENGL 1920 Advanced Writing for Professionals (3 cr).
4. ESCH 1010 Freshman Engineering I (1 cr), MENG 1001 Introduction to Aerospace & Mechanical Engineering (1 cr) or MENG 1002 Computer-Aided Engineering Design (1 cr) are acceptable for transfer credit. External transfer students may substitute with equivalent course transferred.
5. Requires one year of high school chemistry with a grade of “C” or better and Pre-Calculus placement. Transfer credit can be given for CHEM 1070/1075.
6. Enrollment in this course is based on your SAT or ACT score in English. Students can take ENGL 1900 Advanced Strategies Of Rhetoric and Research (3 cr) in lieu of ENGL 1920 Advanced Writing for Professionals (3 cr).
Student must meet the required Math Index before enrolling in MATH 1510 Calculus I (4 cr).

Courses shall be chosen from Philosophy, Theology, Social and Behavioral Sciences, or Humanities (guidelines below):

- **Humanities** - Courses include: Fine Arts (excludes applied, studio, and performance courses), Literature, History, and Foreign Languages (excludes English or native language).
- **Social & Behavioral Sciences** - Courses (3-credit) include: Anthropology, Communication, Communication Disorders, Economics, Education, Political Science, Psychology, Social Work, Sociology, Criminal Justice, and Public Policy Studies (excludes field service courses).

These electives shall satisfy the ABET basic science requirements, which require at least one of these electives to be other than Math, Physics or Chemistry. The 4-credit science elective must be a lab course selected from the following list:

- BIOL 1240 Principles of Biology I (3 cr) and BIOL 1245 Principles of Biology I Laboratory (1 cr)
- EAS 1010 Earth Systems I-The Solid Earth (3 cr) and EAS 1020 Earth's Environment I Lab (1 cr)
- CHEM 1120 General Chemistry 2 (0,3 cr) and CHEM 1125 General Chemistry 2 Laboratory (1 cr)
- EAS 1030 Earth's Dynamic Environment II (3 cr) and EAS 1040 Earth's Environment II Lab (1 cr)
- PHYS 1630 Engineering Physics II (3 cr) and PHYS 1640 Engineering Physics II Laboratory (1 cr)

The 3-hour Math/Science elective must be sophomore level engineering student. Example courses include:

- EAS 1050 Introduction to Oceanography (1,3 cr)
- EAS 1090 Climate Change (3 cr)
- EAS 2110 Meteorological Analysis (3 cr)
- EAS 2300 Geology for Engineers (3 cr)
- EAS 2440 Atmospheric Processes and Systems (3 cr)
- EAS 2530 Fundamentals of Climate Systems (3 cr)
- EAS 2530 Fundamentals of Climate Systems (3 cr)
- PHYS 1130 Introduction to Astronomy (1,3 cr)

Courses for non-science majors and engineering courses will not be accepted.

Select nine (9) credits of Civil Engineering Electives are required from the available offerings above a 3000 level courses in our program.

Six (6) credits of Professional Development Electives are required, typically upper level. Courses can be non-engineering courses, but must support professional development goals. Courses can be selected from pre-approved elective tracks or students can develop individualized plans with departmental approval.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 4030</td>
<td>Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVNG 4050</td>
<td>Advanced Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CVNG 4070</td>
<td>Structural Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>CVNG 4090</td>
<td>Advanced Reinforced Concrete</td>
<td>3</td>
</tr>
<tr>
<td>CVNG 4110</td>
<td>Advanced Steel Design</td>
<td>3</td>
</tr>
<tr>
<td>CVNG 4130</td>
<td>Bridge Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental and Sustainable Engineering

- CVNG 4190 Sustainable Land Development Engineering 3
- CVNG 4210 Sustainable Water Resources Management 3
- CVNG 4330 Open-Channel Flow 3

Transportation Analysis, Planning, and Design

- CVNG 4130 Bridge Engineering 3
- CVNG 4450 Traffic Engineering 3
- CVNG 4470 Urban Transportation Planning 3

Water Resources

- CVNG 4350 Hydraulic Modeling 3
- CVNG 4370 River Engineering 3
- EAS 4190 Geospatial Methods in Environmental Studies 1,3
- EAS 4260 Environmental Geophysics 3