NUCLEAR MEDICINE TECHNOLOGY, B.S.

Saint Louis University’s Bachelor of Science in Nuclear Medicine Technology (NMT) prepares graduates for entry-level positions as nuclear medicine technologists.

Nuclear medicine is a medical specialty that uses safe, painless and cost-effective techniques to image the body and treat disease. Nuclear medicine uses very small amounts of radioactive materials to diagnose and treat diseases using gamma or PET/CT scanners. Nuclear medicine imaging is unique in that it documents organ function and structure. It is a method of gathering information that may otherwise be unavailable, require surgery or necessitate more expensive diagnostic tests.

Program Highlights

Today, nuclear medicine offers procedures that are helpful for a broad span of medical specialties, from pediatrics to cardiology and oncology. There are almost 100 different nuclear medicine imaging procedures available that include every major organ of the human body.

The advantages of earning your B.S. in Nuclear Medicine Technology at Saint Louis University include:

- Student-tailored educational curriculum and individual mentorship by faculty in the NMT profession
- Exceptional clinical preceptors and training sites located conveniently within the St. Louis metropolitan area
- Strong science curriculum which aids in preparation for immediate job placement as well as a future graduate-level education
- Medically relevant coursework ideal for pre-professional studies
- Pre-medicine and pre-physician assistant curriculum options
- Opportunities to participate in professional conferences with faculty and fellow students

Curriculum Overview

SLU’s nuclear medicine technology program includes all basic sciences, as well as an intensive NMT curriculum that includes 1,000 hours of clinical practicum. Upon completing the program, the graduate is eligible for national certification to become a certified nuclear medicine technologist (CNMT).

Nuclear Medicine Technology students must maintain a cumulative GPA of 2.7/4.0 and earn a "C-" or better in math, science and program-specific (NMT prefix) courses to progress in the program.

Nuclear medicine technology students are encouraged to join and participate in the functions of the Saint Louis University Clinical Health Sciences Club.

Clinical and Research Opportunities

Professional coursework in the nuclear medicine technology program is concentrated in the last year and a half of study. Students in the NMT program have opportunities to conduct research and produce projects and papers that are acceptable for publication and could be presented at professional conferences.

Careers

The benefits of SLU’s nuclear medicine technology program also include several career opportunities. Graduates can work as technologists in hospitals and clinics. Students may seek positions in information technology, health care administration, sales and training, radiopharmacy labs, teaching and other related fields.

Nuclear medicine provides an excellent pre-med curriculum. About 20% of graduates proceed to graduate school, with about 50% of the remaining class enrolling in graduate school within five years of employment. Many students attend graduate school part-time with assistance from their place of work.

Career advancement opportunities from the position of staff technologist may lead to areas of administration, education, sales or research.

A nuclear medicine technologist has many responsibilities that encompass a wide range of skills. Some responsibilities include:

- Preparing, calibrating and administering radioactive chemical compounds, known as radiopharmaceuticals.
- Performing diagnostic imaging procedures using radiation-detection technology.
- Administering radioactive tracers used to image the organs of the human body.
- Operating imaging technology, laboratory and computer instrumentation.
- Providing images, data analysis and patient information to the physician for diagnostic interpretation.
- Assisting the physician in theranostic procedures.

The mean annual wage for nuclear medicine technologists was $85,300 in 2022 according to the Bureau of Labor Statistics.

Admission Requirements

Freshmen Applicants

Solid academic performance in college preparatory coursework is a primary concern in reviewing a freshman applicant’s file.

Admission criteria include:

- Minimum cumulative GPA of 2.70 on a 4.00 scale.
- Saint Louis University has a test-optional admission process for all undergraduate programs. Applicants may submit standardized test scores, but those who choose not to will not be disadvantaged in any way in the admission process.

Transfer Applicants

The minimum college transfer GPA is 2.70/4.00.

Scholarships and Financial Aid

There are two principal ways to help finance a Saint Louis University education:

- Scholarships: Awarded based on academic achievement, service, leadership and financial need. In addition to University scholarships, the Doisy College of Health Sciences offers scholarships (https://www.slu.edu/doisy/about/scholarships-for-current-students.php) to sophomores, juniors, seniors and graduate students.
• Financial Aid: Provided in the form of grants and loans, some of which require repayment.

For priority consideration for merit-based scholarships, applicants should apply for admission by Dec. 1 and complete a Free Application for Federal Student Aid (FAFSA) by March 1.

For more information, visit the student financial services office online at http://finaid.slu.edu (http://finaid.slu.edu/).

Accreditation
The Joint Review Committee on Educational Programs in Nuclear Medicine Technology
820 W. Danforth Rd. #B1
Edmond, OK 73003
405-285-0546
http://jrcnmt.org

Additional Accreditation Information (PDF) (https://www.slu.edu/doisy/degrees/program-pdfs/nmt-accreditation-1018.pdf)

JRCNMT Graduate Outcomes Report (https://www.jrcnmt.org/students/graduate-achievement-data/)

Learning Outcomes
1. Graduates will be able to demonstrate the Jesuit value of cura personalis as they perform diagnostic imaging procedures.
2. Graduates will be able to demonstrate effective communication when speaking with both patients and other healthcare professionals in the nuclear medicine department.
3. Graduates will be able to use knowledge, facts and data to assess problems and find solutions as they relate to nuclear medicine imaging procedures.
4. Graduates will be able to demonstrate the ability to translate didactic knowledge into clinical practice as a nuclear medicine technologist.
5. Graduates will be able to exhibit professional characteristics expected of nuclear medicine technologists.

Requirements
Students in Saint Louis University’s nuclear medicine technology major take the following courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1240</td>
<td>General Biology, Information Flow and Evolution</td>
<td>4</td>
</tr>
<tr>
<td>& BIOL 1245</td>
<td>and Principles of Biology I Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 1080</td>
<td>Principles of Chemistry 1 Lecture</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 1085</td>
<td>and Principles of Chemistry 1 Lab</td>
<td></td>
</tr>
<tr>
<td>CHEM 1480</td>
<td>Principles of Chemistry 2 Lecture</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 1485</td>
<td>and Principles of Chemistry 2 Lab</td>
<td></td>
</tr>
<tr>
<td>CMM 1200</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1900</td>
<td>Advanced Strategies of Rhetoric and Research</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 2XXX</td>
<td>Literature</td>
<td>3</td>
</tr>
<tr>
<td>HCE 1600</td>
<td>Embodiment, Life, and Death in Context</td>
<td>3</td>
</tr>
<tr>
<td>HIM 4750</td>
<td>Fundamentals of Clinical Medicine</td>
<td>3</td>
</tr>
<tr>
<td>HSCI 2000</td>
<td>The U.S. Health Care System</td>
<td>3</td>
</tr>
<tr>
<td>HSCI 2100</td>
<td>Health Care Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Degree Option for Students with Bachelor’s Degree
Total semester credits vary based on applicable courses complete in undergraduate program. A specific course plan is individually designed for each applicant.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSCI 2200</td>
<td>Medical Terminology</td>
<td>3</td>
</tr>
<tr>
<td>HSCI 3200</td>
<td>Health Law and Policy</td>
<td>3</td>
</tr>
<tr>
<td>HSCI 3300 & HSCI 3310</td>
<td>Anatomy & Physiology I and Anatomy & Physiology I Lab</td>
<td>4</td>
</tr>
<tr>
<td>HSCI 3400 & HSCI 3410</td>
<td>Anatomy and Physiology Lecture II and Anatomy and Physiology II Lab</td>
<td>4</td>
</tr>
<tr>
<td>HSCI 3700</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1320</td>
<td>Survey of Calculus</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1220 & PHYS 1235</td>
<td>General Physics I and General Physics I Lab</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1240 & PHYS 1255</td>
<td>General Physics II and General Physics II Lab</td>
<td>4</td>
</tr>
<tr>
<td>PSY 1010</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>STAT 1300</td>
<td>Elementary Statistics with Computers (satisfies CORE 3200)</td>
<td>3</td>
</tr>
</tbody>
</table>

Nuclear Medicine Technology
- NMT 4000 Nuclear Medicine Procedures I
- NMT 4100 Radiation Protection
- NMT 4310 Radiation Physics
- NMT 4320 Radiochemistry and Radiopharmacy
- NMT 4330 Nuclear Med Instrumentation
- NMT 4340 Nuclear Medicine Technology Procedures II
- NMT 4350 Nuclear Medicine Information Systems
- NMT 4430 Emerging Technologies
- NMT 4700 Nuclear Medicine Clinical Practicum I
- NMT 4710 Nuclear Medicine Senior Seminar I
- NMT 4800 Nuclear Medicine Clinical Practicum II
- NMT 4900 Nuclear Medicine Clinical Practicum III
- NMT 4910 Senior Seminar II
- NMT 4960 Capstone in Nuclear Medicine

Total Credits: 124
HSCI 3400 & HSCI 3410 Anatomy and Physiology Lecture II and Anatomy & Physiology II Lab 4

Nuclear Medicine Technology
NMT 4000 Nuclear Medicine Procedures I 3
NMT 4100 Radiation Protection 3
NMT 4310 Radiation Physics 2
NMT 4320 Radiochemistry and Radiopharmacy 3
NMT 4330 Nuclear Med Instrumentation 3
NMT 4340 Nuclear Medicine Technology Procedures II 3
NMT 4350 Nuclear Medicine Information Systems 3
NMT 4430 Emerging Technologies 3
NMT 4700 Nuclear Medicine Clinical Practicum I 4
NMT 4710 Nuclear Medicine Senior Seminar I 1
NMT 4800 Nuclear Medicine Clinical Practicum II 2
NMT 4900 Nuclear Medicine Clinical Practicum III 12
NMT 4910 Senior Seminar II 2
NMT 4960 Capstone in Nuclear Medicine 1

Total Credits 131

Continuation Standards
Students must maintain a cumulative grade point average (GPA) of 2.70 to remain in good standing.

Roadmap
Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

Course Title Credits
Year One
Fall
BIOL 1240 General Biology: Information Flow and Evolution (satisfies CORE 3800) 4
& BIOL 1245
CHEM 1080 Principles of Chemistry 1 Lecture and Principles of Chemistry 1 Lab 4
& CHEM 1085
CORE 1000 Ignite First Year Seminar 2
ENGL 1900 Advanced Strategies of Rhetoric and Research (satisfies CORE 1900) 3

Credits 13
Spring
CHEM 1480 Principles of Chemistry 2 Lecture and Principles of Chemistry 2 Lab 4
& CHEM 1485
CMM 1200 Public Speaking (satisfies CORE 1200) 3
CORE 1500 Cura Personalis 1: Self in Community 1
HSCI 2200 Medical Terminology 3
MATH 1320 Survey of Calculus 3
PSY 1010 General Psychology (satisfies CORE 3600) or Introduction to Sociology 3
or SOC 1100

Credits 17

Year Two
Fall
HCE 1600 Embodiment, Life, and Death in Context (or any other approved medical ethics) 3
HSCI 2000 The US Health Care System 3
HSCI 3300 & HSCI 3310 Anatomy & Physiology I and Anatomy & Physiology II Lab 4
PHYS 1220 General Physics I and General Physics I Lab 4

Credits 14
Spring
CORE 1700 Ultimate Questions: Philosophy 3
CORE 2500 Cura Personalis 2: Self in Contemplation 0
HSCI 3400 & HSCI 3410 Anatomy and Physiology Lecture II and Anatomy & Physiology II Lab 4
PHYS 1240 General Physics II and General Physics II Lab 4
STAT 1300 Elementary Statistics with Computers (satisfies CORE 3200) 3

Credits 12

Year Three
Fall
HIM 4750 Fundamentals of Clinical Medicine 3
HSCI 3200 Aspects of Health Law 3
HSCI 3700 Research Methods (! satisfies CORE 4000) 3
ENGL 2XXX-3XXX Literature Elective: satisfies CORE 3400 3

Credits 14
Spring
CORE 2800 Eloquentia Perfecta 3: Creative Expression 2-3
HSCI 2100 Health Care Management 3
NMT 4000 Nuclear Medicine Procedures I 3
NMT 4100 Radiation Protection 3
NMT 4350 Nuclear Medicine Information Systems 3

Credits 14-15

Year Four
Fall
NMT 4310 Radiation Physics 2
NMT 4320 Radiochemistry and Radiopharmacy 3
NMT 4330 Nuclear Med Instrumentation 3
NMT 4340 Nuclear Medicine Technology Procedures II 3
NMT 4700 Nuclear Medicine Clinical Practicum I (Reflection-in-Action in development) 4
NMT 4710 Nuclear Medicine Senior Seminar I (CP3 in development) 1
NMT 4800 Nuclear Medicine Clinical Practicum II (taken in the Winter Session) 2

Credits 18
Spring
NMT 4430 Emerging Technologies 3
NMT 4900 Nuclear Medicine Clinical Practicum III 12

Credits 18
Second Baccalaureate Degree Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foundation Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theology or Religion</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Medical Ethics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Written Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Oral Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Arts (Fine, Performing, Art History or equivalent)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Natural or Applied Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social or Behavioral Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Quantitative Reasoning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities or Social/Behavioral Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pre-Requisite Requirements</td>
<td></td>
</tr>
<tr>
<td>CHEM 1080 & CHEM 1085</td>
<td>Principles of Chemistry 1 Lecture and Principles of Chemistry 1 Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1480 & CHEM 1485</td>
<td>Principles of Chemistry 2 Lecture and Principles of Chemistry 2 Lab</td>
<td>4</td>
</tr>
<tr>
<td>HSCI 3300 & HSCI 3310</td>
<td>Anatomy & Physiology I and Anatomy & Physiology I Lab</td>
<td>4</td>
</tr>
<tr>
<td>HSCI 3400 & HSCI 3410</td>
<td>Anatomy and Physiology Lecture II and Anatomy & Physiology II Lab</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1200</td>
<td>College Algebra</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1220 & PHYS 1235</td>
<td>General Physics I and General Physics I Lab</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1240 & PHYS 1255</td>
<td>General Physics II and General Physics II Lab</td>
<td>4</td>
</tr>
<tr>
<td>HCE 1700</td>
<td>Death, Disability, Disease, and the Meaning of Life (or other approved Medical Ethics)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>60</td>
</tr>
</tbody>
</table>

Courses to Be Taken at Saint Louis University

<table>
<thead>
<tr>
<th>Year One</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Title</td>
</tr>
<tr>
<td>NMT 4000</td>
<td>Nuclear Medicine Procedures I</td>
</tr>
<tr>
<td>NMT 4100</td>
<td>Radiation Protection</td>
</tr>
<tr>
<td>NMT 4350</td>
<td>Nuclear Medicine Information Systems</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>NMT 4310</td>
<td>Radiation Physics</td>
</tr>
<tr>
<td>NMT 4320</td>
<td>Radiochemistry and Radiopharmacy</td>
</tr>
<tr>
<td>NMT 4330</td>
<td>Nuclear Med Instrumentation</td>
</tr>
<tr>
<td>NMT 4340</td>
<td>Nuclear Medicine Technology Procedures II</td>
</tr>
<tr>
<td>NMT 4700</td>
<td>Nuclear Medicine Clinical Practicum I</td>
</tr>
<tr>
<td>NMT 4710</td>
<td>Nuclear Medicine Senior Seminar I</td>
</tr>
</tbody>
</table>

Program Notes

Successful completion leads to a second baccalaureate degree in nuclear medicine technology. This option is for a student who already possesses a bachelor's degree and is motivated to become a practicing nuclear medicine technologist in an accelerated time frame.

To be considered for the second baccalaureate degree option, the applicant must have satisfactorily completed a baccalaureate degree with a minimum GPA of 2.7 (on a 4.0 scale), including the prerequisite courses listed above.

The applicant must complete the application for the professional year and submit official transcripts of prior college work through the SLU admission website at https://www.slu.edu/apply (https://www.slu.edu/apply/).

The applicant must show satisfactory evidence of good character and physical ability to perform the functions of the nuclear medicine technologist. All applicants must meet the professional performance and technical standards required by the profession. Students must also successfully complete a drug screen and criminal background check prior to the start of the professional year.

Application to the second baccalaureate option is via a competitive application process, with admission granted on a space-available basis. The selection process includes a personal interview for qualified applicants.

Selection Factors

Among the parameters considered by the selection committee are:

- Applicant’s academic potential as evidenced by previous performance in college
- Specific motivation toward the pursuit of a health care profession
- Evidence of sound judgment
- Interpersonal and communication skills
- Job shadowing of a nuclear medicine department is highly recommended

Contact Us

Apply for Admission (https://www.slu.edu/admission/)

Contact Doisy College of Health Sciences:
Julie Miller
Recruitment Specialist
314-977-2570
dchs@health.slu.edu