BIOSTATISTICS AND HEALTH ANALYTICS, M.S.

The 21st century is the era of "big data." Every day, we create 2.5 quintillion bytes of data — so much that 90% of the data in the world today has been created in the last two years alone. It is estimated that 30% of this data comes from the health care industry. Saint Louis University’s Master of Science (M.S.) in Biostatistics and Health Analytics will not only prepare students to handle this data but also to apply analytic techniques to answer important research questions related to health and health care.

Program Highlights
This program is designed for students interested in a field that combines quantitative reasoning, coding and scientific skills to solve problems in health and medicine. It is suited for those with strong quantitative abilities and a desire to apply mathematics, statistics, computer programming and data analysis to health-related issues. An M.S. in Biostatistics and Health Analytics can prepare students for professional biostatistical careers and provides a firm academic foundation for subsequent doctoral study in statistical science.

The field of biostatistics is a Science Technology Engineering and Mathematics (STEM) focus area since the field of biostatistics is a mathematically based science. In 2006, the United States launched a program to increase the number of students who receive training in STEM areas. This program will fill the need for graduates with technical abilities to analyze data and draw inferences.

Curriculum Overview
Students take courses in public health, the theory of biostatistics, methods of biostatistics and computing. Students finish by doing a capstone project under the direction of a faculty member in the Department of Epidemiology and Biostatistics.

Two Concentrations Available
Students with an interest in learning skills across a broad spectrum of biostatistics and data analytics can choose the traditional biostatistics concentration. Those who want to apply their skills on geospatial data can choose the geospatial health data analytics concentration. Both programs require a core set of material on biostatistics and analytics, and then each concentration has its own requirements for completion.

Fieldwork and Research Opportunities
Students will have the opportunity to do research as part of their capstone project

Careers
Graduates of SLU’s M.S. in Biostatistics and Health Analytics will be prepared to work as a biostatistician, data scientist or data analyst. The number of students in the U.S. who have received master's degrees in biostatistics has increased by a factor of seven since 2000.

Data scientists, biostatisticians and statisticians are often rated as among the nation's top jobs, measured in terms of salary and job satisfaction.

Scholarships and Financial Aid
The College for Public Health and Social Justice offers several ways to help finance graduate education. Opportunities include a limited number of merit-based scholarships and graduate research assistantships. Awards are made to applicants with the highest combinations of GPAs and test scores who complete their applications by the priority deadlines.

For more information, visit the student financial services office online at http://finaid.slu.edu (http://finaid.slu.edu/).

Accreditation
The College for Public Health and Social Justice is fully accredited by the Council on Education for Public Health (CEPH).

View the Most Recent CEPH Self-Study (July 2016) (http://www.slu.edu/public-health-social-justice/pdfs/cphsj_self_study_august_2015_report.pdf)

Learning Outcomes
Learning Outcomes Common to Both Concentrations

• Foundations: Students should be able to apply foundational principles of probability and statistics to develop methods for estimation and hypothesis testing.

• Analysis: Students will develop statistical models for data and make inferences to answer research questions in public health.

• Communication: Students will describe the process of data collection, and convey the results of statistical analysis, both orally and in writing.

Additional Learning Outcomes for Traditional Biostatistics Concentration

• Data and computing: Students will use the appropriate software to collect, manage, clean and analyze data.

• Design: Students should be able to design experiments or data collection strategies to answer research questions in public health.

Additional Learning Outcomes for Geospatial and Health Data Analytics Concentration

• Data Management: Students will collect, manage, analyze, and display geospatial health data.

• Spatial and Spatio-temporal inference: Students will build and analyze models to assess the health of populations across both time and geographic regions.

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 5020</td>
<td>Theory of Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>BST 5025</td>
<td>Theory of Biostatistics II</td>
<td>3</td>
</tr>
<tr>
<td>BST 5100</td>
<td>Introduction to General Linear Modeling</td>
<td>3</td>
</tr>
<tr>
<td>BST 5400</td>
<td>Applied Data Management</td>
<td>3</td>
</tr>
<tr>
<td>PUBH 5030</td>
<td>Methodological Approaches to Understanding Population Health</td>
<td>3</td>
</tr>
<tr>
<td>BST 5961</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentrations
Select one of the following: 12

Traditional Biostatistics Concentration (p. 2)
Geospatial Health Data Analytics Concentration (p. 2)

Electives
Select two courses from among the following: 6

- BST 5220 Multilevel and Longitudinal Data Analysis
- BST 5230 Bayesian Statistics
- BST 5420 Sampling Theory and Survey Design in Public Health
- BST 6100 Causal Inference
- GIS 5030 Geospatial Data Management
- SOC 5670 Spatial Demography: Applied Statistics for Spatial Data
- GIS 5120 Geospatial Analytics

Total Credits 36

Traditional Biostatistics Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 5030</td>
<td>Statistical Programming and Study Planning: SAS</td>
<td>3</td>
</tr>
<tr>
<td>BST 5200</td>
<td>Survival Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BST 5210</td>
<td>Categorical Data Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Year Two

Fall

- BST 5200 Survival Data Analysis 3
- BST 5210 Categorical Data Analysis 3

Elective Courses

Choose two electives in consultation with mentor 6

Total Credits 36

Geospatial Health Data Analytics Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS 5010</td>
<td>Introduction to Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>BST 5600</td>
<td>R for Spatial Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BST 5610</td>
<td>Spatial Epidemiology and Disease Mapping</td>
<td>3</td>
</tr>
<tr>
<td>BST 5620</td>
<td>Spatio-Temporal Models in Public Health</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses

Choose two electives in consultation with mentor 6

Continuation Standards

Students must maintain a cumulative grade point average (GPA) of 3.00 in all graduate/professional courses.

Roadmap

Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

Geospatial Health Data Analytics Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 5020</td>
<td>Theory of Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>PUBH 5030</td>
<td>Methodological Approaches to Understanding Population Health</td>
<td>3</td>
</tr>
<tr>
<td>GIS 5010</td>
<td>Introduction to Geographic Information Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

- BST 5025 Theory of Biostatistics II 3
- BST 5100 Introduction to General Linear Modeling 3
- BST 5600 R for Spatial Analysis 3

Year Two

Fall

- BST 5610 Spatial Epidemiology and Disease Mapping 3
- BST 5400 Applied Data Management 3

Elective

Choose Biostatistics Elective or chosen in consultation with mentor 3

Total Credits 36

Traditional Biostatistics and Health Analytics Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 5020</td>
<td>Theory of Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>PUBH 5030</td>
<td>Methodological Approaches to Understanding Population Health</td>
<td>3</td>
</tr>
<tr>
<td>BST 5400</td>
<td>Applied Data Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

- BST 5025 Theory of Biostatistics II 3
- BST 5030 Statistical Programming and Study Planning: SAS 3
- BST 5100 Introduction to General Linear Modeling 3

Year Two

Fall

- BST 5200 Survival Data Analysis 3
- BST 5210 Categorical Data Analysis 3
<table>
<thead>
<tr>
<th>Elective</th>
<th>Biostatistics Elective chosen in consultation with mentor</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Credits</td>
<td>9</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST 5961</td>
<td>Master's Project</td>
<td>3</td>
</tr>
<tr>
<td>BST 5500</td>
<td>Statistical Learning</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>Biostatistics Elective chosen in consultation with mentor</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>9</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

Contact Us

Apply for Admission (https://sophas liaisoncas com/applicant ux/#/login)

For additional admission questions please contact:
Bernie Backer
Director of Graduate Recruitment and Admissions
314-977-8144
bernard.backer@slu.edu