COMPUTER SCIENCE, B.A. TO ARTIFICIAL INTELLIGENCE, M.S. ACCELERATED PROGRAM

This program allows a student to complete, in an accelerated fashion, both the Bachelor of Arts in Computer Science and the Master of Science in Artificial Intelligence at Saint Louis University.

For additional information, see the catalog entries for the following programs:

Requirements

Students who wish to apply to this accelerated program should have completed all 2000-level coursework required of the computer science bachelor’s program and have completed at least 75 credits at the time of application. At the time of application, students must have a cumulative GPA of at least 3.00 and a GPA of at least 3.00 in their computer science coursework.

Contact the graduate coordinator for more details.

Non-Course Requirements

All Science and Engineering B.A. and B.S. students must complete an exit interview/survey near the end of their bachelor’s program.

Continuation Standards

Students must maintain a cumulative GPA of at least 3.00 and a GPA of at least 3.00 in their computer science coursework.

Students who drop below that GPA while in the accelerated program will be placed on a one-semester probationary period before being dismissed from the accelerated program.

Only grades of B or better in the graduate courses taken while an undergraduate can be applied to the master’s degree.

Roadmap

Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

<table>
<thead>
<tr>
<th>Year One</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CSCI 10xx (p. 2) Introduction to Computer Science †</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1660 Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core and/or General Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>CSCI 1300 Introduction to Object-Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 1510 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>University Core and/or General Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Two</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CSCI 2100 Data Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CSCI 2500 Computer Organization and Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1520 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>University Core and/or General Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td>CSCI 2300 Object-Oriented Software Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CSCI 2510 Principles of Computing Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 3850 Foundation of Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core and/or General Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Three</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CSCI 3100 Algorithms</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core and/or General Electives</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>5000-level version of CSCI Systems Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHIL 3050X Computer Ethics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core and/or General Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Four</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CSCI 4961 Capstone Project I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CSCI 5750 Introduction to Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core and/or General Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>CSCI 4962 Capstone Project II</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CSCI 5740 Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core and/or General Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Five</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CSCI 5030 Principles of Software Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Artificial Intelligence Foundation selection</td>
<td>3</td>
</tr>
</tbody>
</table>
Artificial Intelligence Applications selection 3
Artificial Intelligence Elective 3
Credits 12

Spring
CSCI 5961 Artificial Intelligence Capstone Project 3
Artificial Intelligence Foundations selection 3
Or
Application Course (p. 2)
CSCI 5xxx General Elective "a" 3
Credits 9
Total Credits 140

"a" Waiver replacement for CSCI 5050: Computing and Society

Introduction to Computer Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 1010</td>
<td>Introduction to Computer Science: Principles</td>
<td></td>
</tr>
<tr>
<td>CSCI 1020</td>
<td>Introduction to Computer Science: Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>CSCI 1025</td>
<td>Introduction to Computer Science: Cybersecurity</td>
<td></td>
</tr>
<tr>
<td>CSCI 1030</td>
<td>Introduction to Computer Science: Game Design</td>
<td></td>
</tr>
<tr>
<td>CSCI 1040</td>
<td>Introduction to Computer Science: Mobile Computing</td>
<td></td>
</tr>
<tr>
<td>CSCI 1050</td>
<td>Introduction to Computer Science: Multimedia</td>
<td></td>
</tr>
<tr>
<td>CSCI 1060</td>
<td>Introduction to Computer Science: Scientific Programming</td>
<td></td>
</tr>
<tr>
<td>CSCI 1070</td>
<td>Introduction to Computer Science: Taming Big Data</td>
<td></td>
</tr>
<tr>
<td>CSCI 1080</td>
<td>Introduction to Computer Science: World Wide Web</td>
<td></td>
</tr>
<tr>
<td>CSCI 1090</td>
<td>Introduction to Computer Science: Special Topics</td>
<td></td>
</tr>
</tbody>
</table>

With permission, a computing-intensive course from another discipline may be substituted. Examples of such courses include:

- BME 2000 Biomedical Engineering Computing
- CVNG 1500 Civil Engineering Computing
- STAT 3850 Foundation of Statistics

Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 4500</td>
<td>Advanced Operating Systems</td>
<td></td>
</tr>
<tr>
<td>CSCI 4530</td>
<td>Computer Security</td>
<td></td>
</tr>
<tr>
<td>CSCI 4550</td>
<td>Computer Networks</td>
<td></td>
</tr>
<tr>
<td>CSCI 4610</td>
<td>Concurrent and Parallel Programming</td>
<td></td>
</tr>
<tr>
<td>CSCI 4620</td>
<td>Distributed Computing</td>
<td></td>
</tr>
</tbody>
</table>

Program Notes

CSCI 5050 Computing and Society (3 cr) requirement will be waived for students who took Computer Ethics as an undergraduate; these hours would become an additional graduate elective.

Thesis Option

A master's thesis is optional. Students completing a thesis should take six credits of Thesis Research Thesis Research (CSCI 5990) as part of the elective requirements.

Internship with Industry

Students may apply at most three credits of Internship with Industry (CSCI 5910) toward the degree requirements.

Closely Related Disciplines

With approval, students may include up to six credits of elective graduate coursework in closely related disciplines (e.g. mathematics and statistics, bioinformatics and computational biology, electrical and computer engineering).