Saint Louis University’s computer science B.S. to artificial intelligence M.S. accelerated program allows a student to complete both the Bachelor in Science in Computer Science and the Master of Science in Artificial Intelligence in a shorter time period than if the degrees were pursued independently.

For additional information see the catalog entries for the following programs:

Computer Science, B.S.
Artificial Intelligence, M.S.

Requirements
Students who wish to apply to this accelerated program should have completed all 2000-level coursework required of the computer science bachelor’s program and have completed at least 75 credits at the time of application. At the time of application, students must have a cumulative GPA of at least 3.00 and a GPA of at least 3.00 in their computer science coursework.

Contact the graduate coordinator for more details.

Continuation Standards
Students must maintain a cumulative GPA of at least 3.00 and a GPA of at least 3.00 in their computer science coursework.

Students who drop below that GPA while in the accelerated program will be placed on a one-semester probationary period before being dismissed from the accelerated program.

Only grades of B or better in the graduate courses taken while an undergraduate can be applied to the master’s degree.

Roadmap
Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year One</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCI 10xx</td>
<td>Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>(p. 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1510</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>University Core and/or General Electives</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Spring
CSCI 1300 Introduction to Object-Oriented Programming 4
MATH 1510 Calculus I 4
University Core and/or General Electives 6
Credits 14

Year Two
Fall
CSCI 2100 Data Structures 4
CSCI 2500 Computer Organization and Systems 3
MATH 1660 Discrete Mathematics 3
Science I with lab 4
PHIL 3410 Computer Ethics 3
Credits 17

Spring
CSCI 2300 Object-Oriented Software Design 3
CSCI 2510 Principles of Computing Systems 3
STAT 3850 Foundation of Statistics 3
Science II with lab 4
University Core and/or General Electives 3
Credits 16

Year Three
Fall
CSCI 3100 Algorithms 3
Additional Mathematics/Statistics (2000+) 3
Science or engineering 3-4
University Core and/or General Electives 6
Credits 15-16

Spring
CSCI 3200 Programming Languages 3
CSCI 3300 Software Engineering 3
5000-level version of CSCI Systems Elective 3
Additional Mathematics/Statistics (2000+) 3
University Core and/or General Electives 3
Credits 15

Year Four
Fall
CSCI 4961 Capstone Project I 2
CSCI 5750 Introduction to Machine Learning 3
University Core and/or General Electives 9
Credits 14

Spring
CSCI 4962 Capstone Project II 2
CSCI 5740 Introduction to Artificial Intelligence 3
University Core and/or General Electives 9
Credits 14

Year Five
Fall
CSCI 5030 Principles of Software Development 3
Artificial Intelligence Foundations selection 3
Artificial Intelligence Applications selection 3
Credits 9
Artificial Intelligence Elective 3
Credits 12

Spring
CSCI 5961 Artificial Intelligence Capstone Project 3
Artificial Intelligence Foundation 3
Or
Artificial Intelligence Application Course (p. 2)
CSCI 5xxx General Elective a 3
Credits 9

Total Credits 142-143

a
Waiver replacement for CSCI 5050: Computing and Society.

Introduction to Computer Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 1010</td>
<td>Introduction to Computer Science: Principles</td>
<td></td>
</tr>
<tr>
<td>CSCI 1020</td>
<td>Introduction to Computer Science: Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>CSCI 1025</td>
<td>Introduction to Computer Science: Cybersecurity</td>
<td></td>
</tr>
<tr>
<td>CSCI 1030</td>
<td>Introduction to Computer Science: Game Design</td>
<td></td>
</tr>
<tr>
<td>CSCI 1040</td>
<td>Introduction to Computer Science: Mobile Computing</td>
<td></td>
</tr>
<tr>
<td>CSCI 1050</td>
<td>Introduction to Computer Science: Multimedia</td>
<td></td>
</tr>
<tr>
<td>CSCI 1060</td>
<td>Introduction to Computer Science: Scientific Programming</td>
<td></td>
</tr>
<tr>
<td>CSCI 1070</td>
<td>Introduction to Computer Science: Taming Big Data</td>
<td></td>
</tr>
<tr>
<td>CSCI 1080</td>
<td>Introduction to Computer Science: World Wide Web</td>
<td></td>
</tr>
<tr>
<td>CSCI 1090</td>
<td>Introduction to Computer Science: Special Topics</td>
<td></td>
</tr>
</tbody>
</table>

With permission, a computing-intensive course from another discipline may be substituted. Examples of such courses include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 2000</td>
<td>Biomedical Engineering Computing</td>
</tr>
<tr>
<td>CVNG 1500</td>
<td>Civil Engineering Computing</td>
</tr>
<tr>
<td>STAT 3850</td>
<td>Foundation of Statistics</td>
</tr>
</tbody>
</table>

Systems Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 4500</td>
<td>Advanced Operating Systems</td>
<td></td>
</tr>
<tr>
<td>CSCI 4530</td>
<td>Computer Security</td>
<td></td>
</tr>
<tr>
<td>CSCI 4550</td>
<td>Computer Networks</td>
<td></td>
</tr>
<tr>
<td>CSCI 4610</td>
<td>Concurrent and Parallel Programming</td>
<td></td>
</tr>
<tr>
<td>CSCI 4620</td>
<td>Distributed Computing</td>
<td></td>
</tr>
</tbody>
</table>

Program Notes

Thesis Option
A master’s thesis is optional. Students completing a thesis should take six credits of Thesis Research (CSCI 5990) in lieu of the AI Capstone Project and either a foundations or applications selection.

Internship with Industry
Students may apply at most three credits of Internship with Industry (CSCI 5910) toward the degree requirements.