PHYSICS, B.S.

The physics major at Saint Louis University provides a foundation for all the natural sciences and engineering disciplines. Physics has brought many revolutionary ideas such as relativity, quantum mechanics, and the Big Bang Theory, profoundly altering how humankind views the universe.

Physicists have made many breakthrough discoveries. The invention of the transistor by physicists has made the modern computer possible, while the development of lasers has led to diverse applications ranging from supermarket scanners to laser surgery. Physicists are versatile problem solvers and excel in many technical fields.

Training in physics leads to a broad-based understanding of natural phenomena, analytical and computer skills, experience with electronics and the operation of sophisticated equipment, an understanding of measurements and their limitations, and the ability to formulate and solve complex technical problems. Physics majors at SLU desire to understand the physical universe around them. They are interested in questions such as “Why do elementary particles behave the way they do?” “What is the nature of light?” or “How did the universe begin, and what will eventually happen to it?” Some physics students pursue double majors in mathematics, computer science or an engineering field.

Physics students who also like to explore other languages and cultures can study at SLU’s campus in Madrid. International study within the physics discipline opens your horizons and prepares you for success in an increasingly global job market. SLU-Madrid offers the required coursework for the first three semesters of the physics major, making studying abroad an exciting option for pursuing a physics degree at SLU.

Curriculum Overview

SLU’s B.S. in physics focuses on both fundamentals and applications of physics. It includes many opportunities to participate in cutting-edge research.

Physics majors gain a solid foundation in analytical, computational and laboratory skills through physics coursework. The physics curriculum includes courses in classical mechanics, quantum mechanics, electricity and magnetism, thermodynamics and statistical mechanics, optics, electronics, modern and solid-state physics, as well as nanoscience and nanotechnology.

Fieldwork and Research Opportunities

The benefits of SLU’s physics program also include several internship and career opportunities. The physics department employs some of its students as teaching and research assistants during the summer. Students have held summer internships at NASA-Langley, the Argonne National Laboratory and other laboratories. Students have worked during the summer and during the year at local companies such as Boeing and Anheuser-Busch. Numerous opportunities exist for summer research in basic and applied physics in the School of Science and Engineering, national laboratories and National Science Foundation-sponsored programs at universities throughout the United States.

SLU’s physics program engages students in exciting research opportunities in experimental, computational or theoretical physics. New state-of-the-art research laboratories allow students to work alongside faculty members on research projects.

Careers

Graduates with a bachelor’s degree in physics enter various careers that depend on the technical skills gained in college. Alumni work in product development and quality control in large companies such as RCA, Boeing and Lockheed-Martin. Alumni are computer specialists at Anheuser-Busch and other companies. Some are now involved in the marketing of technical products, while others are in management positions. A few graduates have entered military careers. Students frequently earn double majors, combining physics with mathematics, computer science or chemistry.

Admission Requirements

Begin Your Application (http://www.slu.edu/apply.php)

Saint Louis University also accepts the Common Application.

Freshman

All applications are thoroughly reviewed with the highest degree of individual care and consideration to all credentials that are submitted. Solid academic performance in college preparatory coursework is a primary concern in reviewing a freshman applicant’s file.

To be considered for admission to any Saint Louis University undergraduate program, applicants must be graduating from an accredited high school, have an acceptable HiSET exam score or take the General Education Development (GED) test.

Transfer

Applicants must be a graduate of an accredited high school or have an acceptable score on the GED.

Students who have attempted fewer than 24 semester credits (or 30 quarter credits) of college credit must follow the above freshmen admission requirements. Students who have completed 24 or more semester credits (or 30 quarter credits) of college credit must submit transcripts from all previously attended college(s).

In reviewing a transfer applicant’s file, the Office of Admission holistically examines the student’s academic performance in college-level coursework as an indicator of the student’s ability to meet the academic rigors of Saint Louis University. Where applicable, transfer students will be evaluated on any courses outlined in the continuation standards of their preferred major.

International Applicants

All admission policies and requirements for domestic students apply to international students along with the following:

- Demonstrate English Language Proficiency (https://catalog.slu.edu/academic-policies/office-admission/undergraduate/english-language-proficiency/)
- Proof of financial support must include:
 - A letter of financial support from the person(s) or sponsoring agency funding the time at Saint Louis University
 - A letter from the sponsor’s bank verifying that the funds are available and will be so for the duration of study at the University
- Academic records, in English translation, of students who have undertaken postsecondary studies outside the United States must include the courses taken and/or lectures attended, practical laboratory work, the maximum and minimum grades attainable, the
grades earned or the results of all end-of-term examinations, and any honors or degrees received. WES and ECE transcripts are accepted.

Additional Admission Requirements

In addition to the general admission and matriculation requirements of the University, the B.S. in physics program requires the following:

- **GPA**: Minimum cumulative 3.00 high school GPA for freshman applicants and 2.70 college GPA for transfer applicants.
- **Coursework**: Fifteen total units of high school work are required: three or four units of English; four or more units of mathematics, including Algebra I and II, Geometry and Precalculus (Algebra II with Trigonometry is not sufficient). Students should be prepared to start the first semester of freshman year in Calculus I or higher; three or four units of science, including general science, introduction to physical science, earth science, biology, physics or chemistry; two or three units of social sciences including history, psychology or sociology; and three units of electives.

Admission requirements are based on a combination of secondary school grades, college admission test scores, co-curricular activities and attempted college coursework, as well as other indicators of the applicant’s ability, career focus and character. This process respects SLU’s non-discrimination policy and is designed to select a qualified, competent and diverse student body with high standards of scholarship and character, consistent with the University’s mission.

Tuition

<table>
<thead>
<tr>
<th>Tuition</th>
<th>Cost Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Tuition</td>
<td>$54,760</td>
</tr>
</tbody>
</table>

Additional charges may apply. Other resources are listed below:

- Information on Tuition and Fees (https://catalog.slu.edu/academic-policies/student-financial-services/tuition/)
- Information on Summer Tuition (https://catalog.slu.edu/academic-policies/student-financial-services/tuition-summer/)

Scholarships and Financial Aid

There are two principal ways to help finance a Saint Louis University education:

- **Scholarships**: Scholarships are awarded based on academic achievement, service, leadership and financial need.
- **Financial Aid**: Financial aid is provided through grants and loans, some of which require repayment.

Saint Louis University makes every effort to keep our education affordable. In fiscal year 2023, 99% of first-time freshmen and 92% of all students received financial aid (https://www.slu.edu/financial-aid/) and students received more than $459 million in aid University-wide.

For priority consideration for merit-based scholarships, apply for admission by December 1 and complete a Free Application for Federal Student Aid (FAFSA) by March 1.

For information on other scholarships and financial aid, visit www.slu.edu/financial-aid.

Learning Outcomes

1. Graduates will be able to understand the principles of physics and apply these principles to problems of fundamental and practical interest.
2. Graduates will be able to design and conduct experiments and analyze and interpret data.
3. Graduates will be able to collaborate effectively on teams.
4. Graduates will be able to communicate effectively and professionally in oral and written formats.
5. Graduates will be able to know about contemporary issues in science and technology.
6. Graduates will be able to understand the numerical formulation of scientific problems and be able to solve such problems utilizing at least one programming language or environment.

Requirements

Physics students must complete a minimum total of 80 credits for the major.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1110</td>
<td>General Chemistry 1</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 1115</td>
<td>and General Chemistry 1 Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 1120</td>
<td>General Chemistry 2</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 1125</td>
<td>and General Chemistry 2 Laboratory</td>
<td></td>
</tr>
<tr>
<td>PHYS 1110</td>
<td>Introduction to Physics (as a career)</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 1610</td>
<td>University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 1620</td>
<td>and University Physics I Laboratory</td>
<td></td>
</tr>
<tr>
<td>PHYS 1630</td>
<td>University Physics II</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 1640</td>
<td>and University Physics II Laboratory</td>
<td></td>
</tr>
<tr>
<td>MATH 1510</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1520</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2530</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>CSCI 1060</td>
<td>Introduction to Computer Science: Scientific Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Physics & Mathematics Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3240</td>
<td>Numerical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3270</td>
<td>Advanced Mathematics for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3550</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3850</td>
<td>Foundation of Statistics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2610</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2620</td>
<td>Modern Physics Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 3110</td>
<td>Classical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3610</td>
<td>Modern Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 4210</td>
<td>Electricity & Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 4610</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3310</td>
<td>Optics</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 3320</td>
<td>and Optics Laboratory</td>
<td></td>
</tr>
<tr>
<td>PHYS 3410</td>
<td>Thermodynamics and Statistical Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>
PHYS 3510 Analog & Digital Electronics and Analog & Digital Electronics Lab 4

Additional Requirements

Select six credits upper division physics courses, 3000-level and above

Research Experience

PHYS 3860 Physics Research I 0
PHYS 4870 Physics Research II 0
PHYS 4880 Senior Inquiry: Research Project 3

General Electives 5-8

Total Credits 120

Non-Course Requirements

All Science and Engineering B.A. and B.S. students must complete an exit interview/survey near the end of their bachelor's program.

Continuation Standards

Students must have a GPA of 2.00 in physics major/minor coursework to be retained in the major/minor.

Roadmap

Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

Course

Title

Year One

Fall

CORE 1000 Ignite First Year Seminar (Must be taken in first 36 credit hours at SLU / Cannot carry attributes) 2-3

CORE 1500 Cura Personalis 1: Self in Community (Must be taken in first 36 credit hours at SLU / Cannot carry attributes / Must be taken at SLU) 1

CORE 1900 Eloquentia Perfecta 1: Written and Visual Communication (Should be taken in first 36 credit hours at SLU / Cannot carry attributes) 3

PHYS 1110 Introduction to Physics (Required for major) 1

CHEM 1110 General Chemistry 1 (satisfies CORE 3800) 3

CHEM 1115 General Chemistry 1 Laboratory 1

MATH 1510 Calculus I (satisfies CORE 3200) 4

Credits 15-16

Spring

CORE 1600 Ultimate Questions: Theology 3

PHYS 1610 University Physics I (Required for major) 3

Year Two

Fall

PHYS 1620 University Physics I Laboratory (Required for major) 1

MATH 1520 Calculus II (Required for major) 4

CHEM 1120 General Chemistry 2 (Required for major) 3

CHEM 1125 General Chemistry 2 Laboratory (Required for major) 1

Credits 15

Year Three

Fall

CORE 2500 Cura Personalis 2: Self in Contemplation 0

PHYS 2610 Modern Physics (Required for major) 3

PHYS 2620 Modern Physics Lab (Required for major) 1

PHYS 3110 Classical Mechanics (Required for major) 3

MATH 3550 Differential Equations (Required for major) 3

MATH 3240 Numerical Analysis (Required for major) 3

General Electives 3

Credits 16

Spring

CORE 2800 Eloquentia Perfecta 3: Creative Expression 2-3

CORE 3400 Ways of Thinking: Aesthetics, History, and Culture 3

PHYS 4610 Quantum Mechanics (Required for major) 3

MATH 3270 Advanced Mathematics for Engineers (Required for major) 3

PHYS 3610 Atomic, Molecular and Solid-State Physics (Required for major) 3

Credits 14-15

Spring

CORE 3600 Ways of Thinking: Social and Behavioral Sciences 3

PHYS 4210 Electricity & Magnetism I (Required for major) 3

PHYS 3410 Thermodynamics and Statistical Mechanics (Required for major) 3

PHYS 3860 Physics Research I (Required for major) 0

PHYS Upper Division Course To total 6 credits. Required for major 1

Credits 3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3850</td>
<td>Foundation of Statistics (Required for major)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Year Four

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE 3500</td>
<td>Cura Personalis 3: Self in the World (May be added to a capstone for the major / Cannot carry attributes)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHYS 4870</td>
<td>Physics Research II (Required for major)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PHYS 3510</td>
<td>Analog & Digital Electronics (Required for major)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 3511</td>
<td>Analog & Digital Electronics Lab (Required for major)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHYS Upper Division Course</td>
<td>To total 6 credits. Required for major</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CORE 4000</td>
<td>Collaborative Inquiry</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>General Electives</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Credits: 13-14

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 4880</td>
<td>Senior Inquiry: Research Project (Required for major)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 3310</td>
<td>Optics (Required for major)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 3320</td>
<td>Optics Laboratory (Required for major)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHYS Upper Division Course or General Elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Electives</td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Credits: 16

Total Credits: 121-124

1. Two additional courses can be selected from the following for PHYS Upper Division Course: PHYS 4010 Nanoscience Frontiers (3cr), PHYS 4020 Experimental Physics (3 cr), PHYS 4110 Intro to Biophysics.

2+SLU

2+SLU programs provide a guided pathway for students transferring from a partner institution.