ELECTRICAL & COMPUTER ENGINEERING (ECE)

ECE 1001 - Introduction to Electrical and Computer Engineering
Credit(s): 1 Credit
Electrical Devices, magnetic devices, electronic devices, digital logic, computer organization, communication systems. Design concepts in electrical and computer engineering. Hands-on experience on familiar pieces of electronic gear. Introduction to software packages applicable to electrical engineering. Fall semester.

ECE 1002 - Introduction to ECE II
Credit(s): 1 Credit
Continuation of the Intro to ECE I - Electrical Devices, magnetic devices, electronic devices, digital logic, computer organization, communication systems. Design concepts in electrical and computer engineering. Hands-on experience on familiar pieces of electronic gear. Introduction to software packages applicable to electrical engineering. Spring semester.

ECE 2001 - Introduction to Electrical Engineering
Credit(s): 3 Credits
Basic DC circuit analysis techniques including current, voltage and power concepts, mesh analysis, node analysis and circuit reduction techniques. Basic AC circuit analysis techniques including impedance concepts, phasor notation, power principles, principles of circuit frequency response and filter concepts. Transient analysis of simple inductive and capacitive networks. Principles of operational amplifier circuit analysis including basic active filter design. Introduction to transformers, power supplies and motors. Prerequisites: PHYS 1610 & MATH 1520. Corequisite: ECE 2002.
Prerequisite(s): (MATH 1520; (PHYS 1610 or PHYS 1630))

ECE 2002 - Electrical Engineering Lab
Credit(s): 1 Credit
Prerequisite(s): ECE 2001
* Concurrent enrollment allowed.

ECE 2101 - Electrical Circuits I
Credit(s): 3 Credits
Prerequisite(s): (PHYS 1610 and MATH 1520)

ECE 2102 - Electrical Circuits II
Credit(s): 3 Credits
Sinusoidal steady-state analysis, sinusoidal steady-state power calculation, balanced 3-phase systems. Mutual inductance and transformers, series and parallel resonance. Applications of Laplace and Fourier transforms to circuit analysis. Spring semester.
Prerequisite(s): ECE 2101

ECE 2103 - Electrical Circuits Lab
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 2101 and 2102. Spring semester.
Prerequisite(s): ECE 2102
* Concurrent enrollment allowed.

ECE 2105 - Digital Design
Credit(s): 3 Credits
Corequisite(s): ECE 2206

ECE 2106 - Digital Design Lab
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 2205. Fall semester.
Corequisite(s): ECE 2205

ECE 2107 - Fourier Transforms
Credit(s): 3 Credits
Fourier transforms to circuit analysis. Spring semester.

ECE 2108 - Laboratory Experiments in Fourier Transforms
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 2107. Fall semester.

ECE 2109 - Laboratory Experiments in Fourier Transforms
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 2107. Spring semester.

ECE 2205 - Digital Design
Credit(s): 3 Credits
Corequisite(s): ECE 2206

ECE 2206 - Digital Design Lab
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 2205. Fall semester.
Corequisite(s): ECE 2205

ECE 2207 - Laboratory Experiments in Digital Design
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 2206. Fall semester.

ECE 2208 - Laboratory Experiments in Digital Design
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 2206. Spring semester.

ECE 2209 - Laboratory Experiments in Digital Design
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 2206. Summer.

ECE 2900 - Internship
Restrictions: Students with a semester level of Junior may enroll.

ECE 2910 - Co-op in ECE
Restrictions: Students with a semester level of Freshman may not enroll.

ECE 2915 - Internship with Industry
Credit(s): 1-3 Credits (Repeatable for credit)
A work experience with an agency, firm or organization that employs persons in this degree field. This experience may be full time or part-time as required by the industry sponsor. This course is used for the first experiential learning session. Grading system is determined by department offering course. Offered every semester.
Restrictions: Students with a semester level of Freshman may not enroll.

ECE 2980 - Independent Study
Credit(s): 1-3 Credits (Repeatable for credit)
Independent study on any electrical engineering topic under the direction of a faculty member. On demand. Prerequisite: Sophomore ECE Standing.

ECE 2990 - Senior Design Sequence
Credit(s): 1-3 Credits (Repeatable for credit)
This is a breadth first course in system design and design group dynamics. This course is intended to prepare students for their capstone design sequence by introducing them to the design of multi-system open ended design problems. This introduction will be facilitated through several design problems. Students will work in design groups with similar objectives as are expected in the capstone design class.
Prerequisite(s): ECE 3150

ECE 3090 - Junior Design
Credit(s): 1 Credit
This is a breadth first course in system design and design group dynamics. This course is intended to prepare students for their capstone design sequence by introducing them to the design of multi-system open ended design problems. This introduction will be facilitated through several design problems. Students will work in design groups with similar objectives as are expected in the capstone design class.
Prerequisite(s): ECE 3150
ECE 3110 - Electric Energy Conversion
Credit(s): 3 Credits
Prerequisite(s): ECE 2102; MATH 3550

ECE 3120 - Microprocessors
Credit(s): 3 Credits
Review of number systems. Microprocessors/microcomputer structure, input/output. Signals and devices. Computer arithmetic, programming, interfacing and data acquisition. Fall semester. Prerequisite: CSCI 1060, CSCI 1300, or BME 200.
Prerequisite(s): Concurrent enrollment allowed.

ECE 3130 - Electronic Circuit Design Lab
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 3131. Spring semester. Prerequisite or Co-requisite: ECE 3131.
Prerequisite(s): ECE 3130

ECE 3131 - Electronic Circuit Design
Credit(s): 3 Credits
Review of semiconductor materials and their electronic properties and applications to electronic devices. Introduction to designing circuits using P-N junction (diodes), bipolar junction transistors (BJTs), and field effect transistors (FET). Introduction to design of Class A, B, and AB amplifiers. Analysis and design of single and multi-stage amplifiers using BJTs and FETs transistors. Spring semester. Prerequisite: ECE 3130.
Prerequisite(s): ECE 2102; MATH 3550

ECE 3132 - Electronic Circuit Design Lab
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 3131. Spring semester. Prerequisite or Co-requisite: ECE 3131.
Prerequisite(s): ECE 3130

ECE 3140 - Electromagnetic Fields
Credit(s): 3 Credits
Prerequisite(s): ECE 2102; MATH 3550

ECE 3150 - Linear Systems
Credit(s): 3 Credits
Introduction to signals and systems. Linear time-invariant systems. Fourier analysis of continuous-time signals and systems. Fourier analysis of discrete-time signals and systems. The Laplace transforms, Z-transforms. Fall Semester. Prerequisite(s): ECE 2102 & MATH-3550.
Prerequisite(s): (CSCI 1060, CSCI 1300, or BME 200)

ECE 3151 - Linear Systems Lab
Credit(s): 1 Credit
Laboratory experiments to emphasize materials covered in ECE 3150. Fall semester. Pre-Requisites: CSCI 1060, CSCI 1300, or BME 2000.
Prerequisite(s): (CSCI 1060, CSCI 1300, or BME 2000)

ECE 3205 - Advanced Digital Design
Credit(s): 3 Credits
Digital Design with Programmable Logic Devices (PLDs) and Field Programmable Gate Arrays (FPGAs); HDL design entry methods; Event driven simulation; Verification using simulation test benches; Timing verification using Back Annotated simulations.
Prerequisite(s): ECE 2205

ECE 3215 - Computer Systems Design
Credit(s): 3 Credits
Organization and design considerations of computer expansion peripherals. Analysis of expansion channel throughput and the influences that impact throughput including resource sharing and overhead. Special emphasis is placed on design concerns automating the movement of data into and out a modern PC.
Prerequisite(s): ECE 3205; ECE 3225

ECE 3216 - Computer Systems Design Lab
Credit(s): 1 Credit
Laboratory investigation of microcomputing expansion covering the material in ECE 315. Practical aspects of peripheral design and implementation. Design, construction, programming, simulation and testing of expansion hardware and the software required to interact with them. Use of hardware description languages and software development tools.
Corequisite(s): ECE 3215

ECE 3217 - Computer Architecture and Organization
Credit(s): 3 Credits
Introduction to the organization and architecture of computer systems, including aspects of digital logic, data representation, assembly level organization, memory systems, and processor architectures. Spring semester.
Prerequisite(s): (CSCI 1300 and MATH 1660)

ECE 3225 - Microprocessors
Credit(s): 3 Credits
Review of number systems. Microprocessors/microcomputer structure, input/output. Signals and devices. Computer arithmetic, programming, interfacing and data acquisition. Fall semester. Prerequisite: CSCI 1060, CSCI 1200, or BME 200.
Prerequisite(s): (CSCI 1060, BME 2000, or CSCI 1300)

ECE 3226 - Microprocessors Laboratory
Credit(s): 1 Credit
Concurrent registration with ECE 3225. Laboratory experiments to emphasize materials covered in ECE 3225. Fall semester.
Prerequisite(s): ECE 3225

ECE 3910 - Co-op with Industry
Credit(s): 0-3 Credits (Repeatable for credit)
A full-time supervised work experience with an agency, firm or organization that employs persons in this degree field. Grading system is determined by department offering course. Offered every semester. Prerequisite: Junior ECE Standing.
Restrictions:
Enrollment limited to students with a semester level of Junior or Senior.

ECE 3915 - Internship with Industry
Credit(s): 0-3 Credits (Repeatable for credit)
A work experience with an agency, firm or organization that employs persons in this degree field. This experience may be full time or part-time as required by the industry sponsor. Grading system is determined by department offering course. Offered every semester. Prerequisite: Junior standing.
Restrictions:
Enrollment limited to students with a semester level of Junior or Senior.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit(s)</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 3930</td>
<td>Special Topics</td>
<td>1-3</td>
<td>Repeatable for credit</td>
</tr>
<tr>
<td></td>
<td>Independent study on any electrical engineering topic under the direction of a faculty member. On demand. Prerequisite: Junior ECE Standing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restrictions:</td>
<td></td>
<td>Enrollment limited to students with a semester level of Junior or Senior.</td>
</tr>
<tr>
<td>ECE 3980</td>
<td>Independent Study</td>
<td>1 or 3</td>
<td>Repeatable for credit</td>
</tr>
<tr>
<td>ECE 4108</td>
<td>Antenna Engineering</td>
<td>3</td>
<td>ECE 3140</td>
</tr>
<tr>
<td>ECE 4110</td>
<td>Power Systems Analysis I</td>
<td>3</td>
<td>ECE 302</td>
</tr>
<tr>
<td></td>
<td>The course deals with analysis and design of electrical power transmission lines and its components. Per-Unit and power systems: Transformers and power lines. RLC - Computing transmission line parameters, ABCD parameters and transmission line steady-state operation. Power flows and system protection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 4111</td>
<td>Power Systems Analysis II</td>
<td>3</td>
<td>ECE 4110</td>
</tr>
<tr>
<td></td>
<td>The course builds on topics covered in part I. Study of symmetrical faults, methods of symmetrical components and basis for studying unsymmetrical faults, power system protection, power system controls, Transient operation of transmission lines and Transient stability. Prerequisite: ECE 3140.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 4120</td>
<td>Automatic Control Systems</td>
<td>3</td>
<td>ECE 3150</td>
</tr>
<tr>
<td>ECE 4132</td>
<td>Analog Integrated Circuit Design</td>
<td>3</td>
<td>ECE 3150</td>
</tr>
<tr>
<td></td>
<td>The purpose of the course is to build on introductory level analog electronics design. It will cover such topics as active loads and current mirrors and then proceed to output stages of amplifiers utilizing Class A, Class B, and Class AB amplifiers. We will employ both Bipolar and MOS technologies. Multistage amplifiers will be introduced. Design of Operational Amplifiers and Differential amplifiers will be covered. Frequency response of amplifiers and stability of feedback circuit will also be covered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 4140</td>
<td>Electromagnetic Waves</td>
<td>3</td>
<td>ECE 3140</td>
</tr>
<tr>
<td>ECE 4141</td>
<td>Radar Systems</td>
<td>3</td>
<td>ECE 4160</td>
</tr>
<tr>
<td></td>
<td>Nature of radar, basic elements of the radar systems. Radar waveforms and applications. Tracking radar techniques and applications, radar electronic countermeasure systems (ECCM). On demand. Prerequisite: Instructor’s permission or ECE 4160.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 4142</td>
<td>Microwave Theory & Techniques</td>
<td>3</td>
<td>ECE 4160</td>
</tr>
<tr>
<td>ECE 4150</td>
<td>Filter Design</td>
<td>3</td>
<td>ECE 4150</td>
</tr>
<tr>
<td>ECE 4151</td>
<td>Digital Signal Processing</td>
<td>3</td>
<td>ECE 4131; MATH 3550</td>
</tr>
<tr>
<td></td>
<td>Filtering, convolution, and Fourier transform of digital signals. Analysis, design and implementation of FIR and IIR filters. Quantization, round-off and scaling effects. DFT and circular convolution. FFT algorithms and implementation. On demand.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 4153</td>
<td>Image Processing</td>
<td>3</td>
<td>ECE 3150; MATH 3550</td>
</tr>
<tr>
<td>ECE 4160</td>
<td>Communication Systems</td>
<td>3</td>
<td>ECE 3150</td>
</tr>
<tr>
<td>ECE 4161</td>
<td>Satellite Communication</td>
<td>3</td>
<td>ECE 3150; ECE 3052</td>
</tr>
<tr>
<td></td>
<td>Overview of satellite systems. Orbits and launching methods. The space segment and the earth segment. Baseband signals and modulation, the space link. Satellite access: single access, pre-assigned FDMA, demand-assigned FDMA, spade system, TDMA, CDMA. On demand. Prerequisite: Instructor’s permission.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 4162</td>
<td>Cellular Communications</td>
<td>3</td>
<td>ECE 3150</td>
</tr>
<tr>
<td></td>
<td>This course covers the basic elements of Cellular communications include propagation phenomenology, multipath, frequency reuse and fading. Included are important aspects of cellular system performance including Grade-of-Service, cellular coverage, and cellular capacity. The course also covers select topics in current cellular system standards including digital modulation and error correction coding schemes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ECE 4170 - Energy Technologies I
Credit(s): 3 Credits (Repeatable for credit)
The course is to introduce current energy consumption of the United States and the World. It is to review/study various energy sources and energy consumption portfolio of the United States and major industrial nations. It is then to consider the impact of various alternative renewable energy sources and energy conservation methods on overall energy consumption equation. In this course several major renewable energy sources such as wind, solar, geothermal as well as energy conservation methods will be studied.

ECE 4225 - Hardware/Software Co-Design
Credit(s): 3 Credits
This course provides an understanding of hardware and software co-design. Topics include type of processors (software), types of integrated circuits (hardware), types of memory and memory architectures, interfacing and system design for real-time operation. This course will emphasis design space exploration and have a capstone project requiring the integration of real-time system into communicating hardware and software pieces.

ECE 4226 - Mobile Robotics
Credit(s): 3 Credits
This course is an introduction to robot kinematics, sensor technology and basic machine control. This course will develop the low level tools required to move robots in an environment and an appreciation of the requirements for doing so in an autonomous fashion. This course will have a capstone project requiring the design or development of a robot platform to meet a goal drawn from current topics.
Prerequisite(s): (ECE 3150 or ECE 3110); (MATH 3850 or ECE 3052); (CSCI 1060, CSCI 1300, or BME 2000)

ECE 4229 - Microcomp-Based System Design
Credit(s): 3 Credits
Study of 16-bit microprocessors architecture, programming, and interfacing. On demand.

ECE 4235 - Digital IC Design
Credit(s): 3 Credits
Introduction to digital electronics. Metal-oxide semiconductor transistors, (MOST’s), MOS inverters and gate circuits. Design of MOSFET based combinational and sequential circuits. Issues related to design of modern Digital Integrated Circuits is covered. Fall semester. Prerequisite: ECE 2205 and ECE 3131.
Prerequisite(s): ECE 2205; ECE 3131

ECE 4245 - Computer Networks Design
Credit(s): 3 Credits
Introduction to modern computer communication networks. Topics include point to point communication links and transmission of digital information; packet switching; multiplexing and concentrator design; multi-access and broadcasting; Local Area Networks; Wide Area Networks; ATM Networks; and ISDN; architectures and protocols for computer networks; the concept of OSI reference mode; discussion of the OSI seven layers; physical interfaces and protocols; dat link control layer; network layer; design issues and modeling techniques; case studies. Co-requisite or Prerequisite: ECE 3215 and ECE 3216.
Prerequisite(s): CSCI 3500

ECE 4800 - ECE Design I
Credit(s): 3 Credits
Principles of engineering experimentation and design. Development of engineering design proposal. Fall Semester. Prerequisite: Senior ECE standing.
Restrictions:
Enrollment limited to students with a semester level of Senior.
Enrollment is limited to students with a major in Computer Engineering or Electrical Engineering.

ECE 4810 - ECE Design II
Credit(s): 3 Credits
Development, analysis and completion of detailed design in electrical engineering. Completion of a project under faculty supervision. Project results are presented in a formal report. Spring semester. Prerequisite: ECE 4800.
Prerequisite(s): ECE 4800

ECE 4910 - Co-Op with Industry
Credit(s): 0-3 Credits (Repeatable for credit)
A full-time supervised work experience with an agency, firm or organization that employs persons in this degree field. Grading system is determined by department offering course. Offered every semester. Prerequisite: Senior Standing.

ECE 4915 - Internship with Industry
Credit(s): 1 Credit (Repeatable for credit)
A work experience with an agency, firm or organization that employs persons in this degree field. This experience may be full time or part-time as required by the industry sponsor. Grading system is determined by department offering course. Offered every semester. Prerequisite: Senior standing.
Restrictions:
Enrollment limited to students with a semester level of Senior.

ECE 4930 - Special Lecture
Credit(s): 1-3 Credits (Repeatable for credit)
Selected topics of special interest to electrical engineering majors. On demand. Prerequisite: Senior ECE standing.
Restrictions:
Enrollment limited to students with a semester level of Senior.
Enrollment is limited to students with a major in Computer Engineering or Electrical Engineering.

ECE 4931 - Special Lecture
Credit(s): 3 Credits (Repeatable for credit)
Selected topics of special interest to electrical engineering majors. On demand. Prerequisite: Senior ECE standing.
Restrictions:
Enrollment limited to students with a semester level of Senior.
Enrollment is limited to students with a major in Computer Engineering or Electrical Engineering.

ECE 4980 - Independent Study
Credit(s): 1-3 Credits (Repeatable for credit)
Credit to be arranged. Independent study on an electrical & computer engineering topic under the direction of a faculty member.
Restrictions:
Enrollment limited to students with a semester level of Senior.
Enrollment is limited to students with a major in Electrical Engineering.
ECE 5000 - Seminars
Credit(s): 0 Credits
Presentations of current research by students, faculty, and guests. Registration required in the first semester. Seminar attendance expected in subsequent semesters.

ECE 5055 - Stochastic Processes
Credit(s): 3 Credits
Introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. The course covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, from which an instructor can choose to match the goals of students. These topics include transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics.

ECE 5110 - Power Systems Analysis I
Credit(s): 3 Credits
The course deals with analysis and design of electrical power transmission lines and its components. Per-Unit and power systems: Transformers and power lines. RLC - Computing transmission line parameters, ABCD parameters and transmission line steady-state operation. Power flows and system protection.

ECE 5111 - Power Systems Analysis II
Credit(s): 3 Credits
The course builds on topics covered in part I. Study of symmetrical faults, methods of symmetrical components and basis for studying unsymmetrical faults, power system protection, power system controls, Transient operation of transmission lines and Transient stability. Prerequisite: ECE 4110.

ECE 5120 - Modern Control Theory
Credit(s): 3 Credits

ECE 5130 - Advanced Semiconductor Devices
Credit(s): 3 Credits
This course will focus mostly on MOSFET and CMOS, but also some advanced topics in BJT and photonic devices. First non-ideal characteristics of MOSFETs will be discussed, like channel-length modulation and short-channel effects. Threshold voltage modification by doping will be covered. Issues with MOS scaling will be covered. A combination of an n-channel and p-channel MOSFET is used for CMOS devices that form the basis for current digital technology. Fundamentals of the CMOS inverter operation will be discussed. The Operation of a CMOS inverter will be explained. Silicon on Silicon and Silicon on Insulator issues will be covered. Prerequisites: ECE 3130.

ECE 5131 - Low Noise Electronics Design
Credit(s): 3 Credits
This course is an introduction to the area of low-noise electronic design. It presents an overview of noise fundamentals, a description of noise models for passive devices and active devices, methods of calculating the noise performance of circuits, and techniques for minimizing noise in circuit design. Prerequisite: ECE 3131.

ECE 5132 - Analog Integrated Circuit Design
Credit(s): 3 Credits
The purpose of the course is to build on introductory level analog electronics design. It will cover such topics as active loads and current mirrors and then proceed to output stages of amplifiers utilizing Class A, Class B, and Class AB amplifiers. We will employ both Bipolar and MOS technologies. Multistage amplifiers will be introduced. Design of Operational Amplifiers and Differential amplifiers will be covered. Frequency response of amplifiers and stability of feedback circuit will also be covered.

ECE 5141 - Radar System
Credit(s): 3 Credits
Basic radar definitions; transmitter power; antenna coverage and gain; target cross-section; receiver noise and system losses; radar equations' pulsed radars; reflection of radar waves and weather conditions; synthetic array radars and pulse compression techniques; track-while scan and electronic scan; millimeter wave and laser radar systems. Prerequisites: ECE 3140 & 4880.

ECE 5142 - Microwave Theory & Techniques
Credit(s): 3 Credits
Introduction to: microwave Transmission lines; microwave network analysis; microwave resonators; microwave components; active microwave circuits; and introduction to microwave systems. Prerequisite: ECE 4140.

ECE 5143 - Antenna Theory and Design
Credit(s): 3 Credits
Antenna fundamentals and definitions; some simply radiating systems; antenna arrays; wire antennas; broadband antennas; and aperture antennas. Prerequisite: ECE 4140.

ECE 5150 - Filter Design
Credit(s): 3 Credits

ECE 5151 - Digital Signal Processing
Credit(s): 3 Credits
This course includes IIR and FIR discrete-time filter theory, mapping from continuous-time to discrete-time filters, bilinear-Z transform, Impulse Invariance method, implementation structures such as Direct form I & II, and numerical precision effects. Prerequisites: Linear Systems, Probability & Statistics, and programming.

ECE 5153 - Image Processing
Credit(s): 3 Credits

ECE 5160 - Communication Systems
Credit(s): 3 Credits

ECE 5180 - Modern Control Theory
Credit(s): 3 Credits

ECE 5200 - Modern Control Theory
Credit(s): 3 Credits

ECE 5300 - Digital Signal Processing
Credit(s): 3 Credits
This course includes IIR and FIR discrete-time filter theory, mapping from continuous-time to discrete-time filters, bilinear-Z transform, Impulse Invariance method, implementation structures such as Direct form I & II, and numerical precision effects. Prerequisites: Linear Systems, Probability & Statistics, and programming.

ECE 5353 - Image Processing
Credit(s): 3 Credits

ECE 5400 - Communication Systems
Credit(s): 3 Credits
ECE 5161 - Satellite Communications
Credit(s): 3 Credits
Overview of satellite systems; orbits and launching methods; the geostationary orbit; radio wave propagations; the space segment; the earth segment; the space link; interference; satellite access; satellite services and the internet. Prerequisites: Senior status and permission of the instructor.

ECE 5162 - Cellular Communications
Credit(s): 3 Credits
This course covers the basic elements of Cellular communications include propagation phenomenology, multipath, frequency reuse and fading. Included are important aspects of cellular system performance including Grade-of-Service, cellular coverage, and cellular capacity. The course also covers select topics in current cellular system standards including digital modulation and error correction coding schemes.

ECE 5170 - Energy Technologies I
Credit(s): 3 Credits
(Repeatable for credit)
The course is to introduce current energy consumption of the United States and the World. It is to review/study various energy sources and energy consumption portfolio of the United States and major industrial nations. It is then to consider the impact of various alternative renewable energy sources and energy conservation methods on overall energy consumption equation. In this course several major renewable energy sources such as wind, solar, geothermal as well as energy conservation methods will be studied.

ECE 5225 - Hardware Software Co-Design
Credit(s): 3 Credits
This course provides an understanding of hardware and software co-design. Topics include type of processors (software), types of integrated circuits (hardware), types of memory and memory architectures, interfacing and system design for real-time operation. This course will emphasize design space exploration and have a capstone project requiring the integration of a real-time system into communicating hardware and software pieces. Recommended prerequisite: ECE 3215.

ECE 5226 - Mobile Robotics
Credit(s): 3 Credits
This course is an introduction to robot kinematics, sensor technology and basic machine control. This course will develop the low level tools required to move robots in an environment and an appreciation of the requirements for doing so in an autonomous fashion. This course will have a capstone project requiring the design or development of a robot platform to meet a goal drawn from current topics. Prerequisites: ECE 3225 & 3150.

ECE 5235 - Digital IC Design
Credit(s): 3 Credits
The course covers the whole range of basic issues related to digital integrated circuit design and development. The course will be mostly based on CMOS technology. It will cover some of the timing issues. Students are expected to carry out term project. Prerequisites: ECE 3130.
Prerequisite(s): ECE 3130

ECE 5910 - Co-Op with Industry
Credit(s): 1-6 Credits
A full-time supervised work experience with an agency, firm or organization that employs persons in this degree field. Grading system is determined by department offering course. Offered every semester. 0-3 credit hours.

ECE 5915 - Internship with Industry
Credit(s): 1-3 Credits
A work experience with an agency, firm or organization that employs persons in this degree field. This experience may be full time or part time as required by the industry sponsor. Grading system is determined by department offering course. Offered every semester. 0-3 credit hours.

ECE 5930 - Special Topics
Credit(s): 3 Credits
(Repeatable for credit)
Special topics course is based on faculty and students interests. This would be an avenue to develop new courses on a trial basis.

ECE 5960 - Masters Project
Credit(s): 1-3 Credits
(Repeatable up to 12 credits)
Theoretical/ computational/ experimental work that leads to a project Report and defense of the Project.

ECE 5970 - Research Topics
Credit(s): 1-3 Credits
(Repeatable up to 12 credits)
Theoretical or experimental work that is not part of the Thesis or Project.

ECE 5980 - Independent Study
Credit(s): 1-3 Credits
(Repeatable up to 12 credits)
An individualized study course, in which students explore topics related to their graduate work and career goals. Students work with faculty members on a specific topic compatible to master’s level and produces a report.

ECE 5990 - Masters Thesis Research
Credit(s): 0-9 Credits
(Repeatable for credit)

ECE 6910 - Co-Op with Industry
Credit(s): 1-6 Credits
A full-time supervised work experience with an agency, firm or organization that employs persons in this degree field. Grading system is determined by department offering course. Offered every semester. 0-3 credit hours.

ECE 6915 - Internship with Industry
Credit(s): 1-3 Credits
A work experience with an agency, firm or organization that employs persons in this degree field. This experience may be full time or part time as required by the industry sponsor. Grading system is determined by department offering course. Offered every semester. 0-3 credit hours.

ECE 6930 - Special Topics
Credit(s): 3 Credits
(Repeatable for credit)

ECE 6970 - Research Topics
Credit(s): 1-3 Credits
(Repeatable up to 12 credits)
Theoretical or experimental work that is not part of the Dissertation.

ECE 6980 - Independent Study
Credit(s): 1-3 Credits
(Repeatable for credit)
An individualized study course, in which students explore topics related to their graduate work and career goals. Students work with faculty members on a specific topic compatible to master’s level and produces a report.

ECE 6990 - Doctoral Dissertation Research
Credit(s): 0-9 Credits
(Repeatable for credit)