ENGINEERING SCIENCES (ESCI)

ESCI 1010 - Freshman Engineering I
Credit(s): 1 Credit
An introduction to the philosophy of engineering and engineering design. Introduction to the various laboratory and computing facilities on campus. Introduction to engineering drawing and computer aided drafting techniques.

ESCI 1020 - Computer Aided Design
Credit(s): 1 Credit
Further topics in the philosophy of engineering and engineering design. Further topics in skills and tools used in engineering.

Prerequisite(s): ESCI 1010

ESCI 2100 - Statics
Credit(s): 3 Credits
Study of force systems acting on particles and rigid bodies, 2-D and 3-D equilibrium, trusses, frames machines, shear and moment diagrams, friction, centroids, area moment of inertia. Pre/Corequisite(s): PHYS 1610.

Prerequisite(s): PHYS 1610

ESCI 2150 - Dynamics
Credit(s): 3 Credits
Particle kinematics and kinetics in rectangular, cylindrical and normal-tangential coordinates; projectiles; relative motion using translating axes; work; conservative forces; conservation of energy; linear and angular impulse and momentum, conservation of momentum, rigid body kinematics and kinetics.

Prerequisite(s): ESCI 2100; (MATH 1520 or Math Waiver per Advisor with a minimum score of 1520)

ESCI 2300 - Thermodynamics
Credit(s): 3 Credits
Properties, characteristics and fundamental equations of gases, application of first and second laws of thermodynamics in evaluation of engines, cycles and processes.

Prerequisite(s): MATH 2530

ESCI 2930 - Special Topics
Credit(s): 3 Credits (Repeatable for credit)

ESCI 2980 - Independent Study
Credit(s): 1 or 3 Credits (Repeatable for credit)

ESCI 3100 - Mechanics of Solids Lab
Credit(s): 1 Credit
Laboratory experiments to emphasize material covered in lectures of ESCI 3100.

Prerequisite(s): ESCI 3101

* Concurrent enrollment allowed.

Corequisite(s): ESCI 3100

ESCI 3110 - Linear Vibrations
Credit(s): 3 Credits
Single and two degrees-of-freedom with and without damping, vibration dampers and absorbers; model properties of vibrating systems; vibration of lumped parameter and continuous systems; approximate numerical methods and digital computation. Review of test equipment and methods.

Prerequisite(s): (ESCI 2150 and MATH 3550)

ESCI 3200 - Fluid Dynamics
Credit(s): 3 Credits
Fluid mechanics, conservation of mass, momentum and energy, stream function; dimensional analysis and similitude; application to problems of inviscid and viscous flows, drag, flow measurements.

Prerequisite(s): MATH 2530

ESCI 3201 - Fluid Dynamics Laboratory
Credit(s): 1 Credit
Concurrent enrollment allowed.

Corequisite(s): ESCI 3200

ESCI 3202 - Fluid Dynamics Laboratory
Credit(s): 1 Credit
Concurrent enrollment allowed.

Corequisite(s): ESCI 3200

ESCI 3410 - Analysis and Control of Linear Systems
Credit(s): 3 Credits
Linear vibration theory; control system block diagrams; analog and digital simulation; frequency and time domain analysis techniques; state space; and introduction to optimal control theory. Spring semester.

Prerequisite(s): ESCI 3110

ESCI 3930 - Special Topics
Credit(s): 3 Credits (Repeatable for credit)

ESCI 3980 - Independent Study
Credit(s): 1 or 3 Credits (Repeatable for credit)

ESCI 4930 - Special Topics
Credit(s): 1-3 Credits (Repeatable for credit)

ESCI 4980 - Independent Study
Credit(s): 1 or 3 Credits (Repeatable for credit)

ESCI 5000 - Engineering Graduate Seminar
Credit(s): 0 Credits (Repeatable for credit)

Engineering Graduate Seminar features talks from professionals in industry and academia. Topics are varied, and range from research, to instruction and the transition from school to career. Engineering MS students are required to pass 2 semesters, and Engineering PhD students are required to pass 4 semesters. PhD students with a previous master’s are only required to take 2 semesters.

Restrictions:
Enrollment limited to students in the Parks College of Eng, Av Tch college.

ESCI 5930 - Special Topics
Credit(s): 1-3 Credits (Repeatable for credit)

A one-time course on a particular topic, or a trial course that is expected to become a standard course with its own unique course number.