MATH 0225 - Basic Mathematics
Credit(s): 3 Credits
Prep course designed to expose students to signed Numbers: common fraction, decimals and percents; ratio and proportion; area and volume; powers and roots; algebraic expressions and operations; linear equations; basic trig metric functions; factoring polynomials.
Attributes: Prof. Studies Students Only

MATH 0235 - Intro Elementary Algebra
Credit(s): 3 Credits
Prerequisite: Math Assessment.
Attributes: Prof. Studies Students Only

MATH 0240 - Intro Elementary Algebra I
Credit(s): 3 Credits
Review of the real number system; linear equations, and inequalities in one and two variables; functions; systems of linear equations. Fall. MATH 0240 and MATH 0250 together cover the same material as MATH 0260, but in two semesters.

MATH 0250 - Intro to Elementary Algebra II
Credit(s): 3 Credits
Exponents, polynomials and polynomial functions; factoring; rational expressions and functions; roots, radicals and root functions; quadratic equations, inequalities and functions. Spring. MATH 0240 and MATH 0250 together cover the same material as MATH 0260, but in two semesters.

MATH 0265 - Intermediate Algebra
Credit(s): 0-3 Credits
Prerequisite: Math Assessment.

MATH 0260 - Intermediate Algebra
Credit(s): 3 Credits
Review of the real number system; linear equations, and inequalities in one and two variables; functions; systems of linear equations; exponents, polynomials and polynomial functions; factoring; rational expressions and functions; roots, radicals and root functions; quadratic equations, inequalities and functions. Fall and spring.

MATH 0265 - Intermediate Algebra
Credit(s): 3 Credits
Review of the real number system; linear equations, and inequalities in one and two variables; functions; systems of linear equations; exponents, polynomials and polynomial functions; factoring; rational expressions and functions; roots, radicals and root functions; quadratic equations, inequalities and functions. Fall and spring. Credit not given for both MATH 0260 and any of the following: MATH 0240, MATH 0250.

MATH 1200 - College Algebra
Credit(s): 3 Credits
Brief review of algebraic essentials, graphs, functions and their graphs, linear and quadratic functions, polynomial and rational functions, exponential and logarithmic functions, systems of linear equations. Intended for students needing more preparation before taking MATH 1320 or MATH 1400. (Offered every Fall, Spring and Summer)

MATH 1240 - Mathematics and the Art of M.C. Escher
Credit(s): 3 Credits
An inquiry course open to all undergraduates. The art of M.C. Escher is used to explore topics in geometry such as symmetry, tessellations, wallpaper patterns, the geometry of the sphere and hyperbolic geometry. Taught in a computer classroom.

MATH 1250 - Math Thinking in Real World
Credit(s): 3 Credits
An inquiry course open to all undergraduates. In this course, aimed at students in the humanities and social sciences, we study some of the greatest ideas of mathematics that are often hidden from view in lower division courses. Topics selected from number theory, the infinite, geometry, topology, chaos and fractals, and probability. Taught in a computer classroom.

MATH 1260 - Statistics Including Sports and Politics
Credit(s): 3 Credits
An inquiry course open to all undergraduates. Producing data through the use of samples and experiments; organizing data through graphs and numbers that describe the distribution of the data of one variable or the relationship between two variables; probability; statistical inference including confidence intervals and tests of significance.

MATH 1300 - Elementary Statistics with Computers
Credit(s): 3 Credits
Data production and analysis; probability basics, distributions; sampling, estimation with confidence intervals, hypothesis testing, t-test; correlation and regression; crosstabulations and chi-square. Students learn to use a statistical package such as SPSS. Credit not given for MATH 1300 and any of the following: STAT 1300 or OPM 2070.

MATH 1305 - College Algebra
Credit(s): 3 Credits
Brief review of algebraic essentials, graphs, functions and their graphs, linear and quadratic functions, polynomial and rational functions, exponential and logarithmic functions, systems of linear equations. Intended for students needing more preparation before taking MATH 1320 or MATH 1400. (Offered every Fall, Spring and Summer)

MATH 1320 - Mathematics and the Art of M.C. Escher
Credit(s): 3 Credits
An inquiry course open to all undergraduates. The art of M.C. Escher is used to explore topics in geometry such as symmetry, tessellations, wallpaper patterns, the geometry of the sphere and hyperbolic geometry. Taught in a computer classroom.

MATH 1350 - Math Thinking in Real World
Credit(s): 3 Credits
An inquiry course open to all undergraduates. In this course, aimed at students in the humanities and social sciences, we study some of the greatest ideas of mathematics that are often hidden from view in lower division courses. Topics selected from number theory, the infinite, geometry, topology, chaos and fractals, and probability. Taught in a computer classroom.

MATH 1360 - Statistics Including Sports and Politics
Credit(s): 3 Credits
An inquiry course open to all undergraduates. Producing data through the use of samples and experiments; organizing data through graphs and numbers that describe the distribution of the data of one variable or the relationship between two variables; probability; statistical inference including confidence intervals and tests of significance.

MATH 1300 - Elementary Statistics with Computers
Credit(s): 3 Credits
Data production and analysis; probability basics, distributions; sampling, estimation with confidence intervals, hypothesis testing, t-test; correlation and regression; crosstabulations and chi-square. Students learn to use a statistical package such as SPSS. Credit not given for MATH 1300 and any of the following: STAT 1300 or OPM 2070.

MATH 1350 - Math Thinking in Real World
Credit(s): 3 Credits
An inquiry course open to all undergraduates. In this course, aimed at students in the humanities and social sciences, we study some of the greatest ideas of mathematics that are often hidden from view in lower division courses. Topics selected from number theory, the infinite, geometry, topology, chaos and fractals, and probability. Taught in a computer classroom.

MATH 1360 - Statistics Including Sports and Politics
Credit(s): 3 Credits
An inquiry course open to all undergraduates. Producing data through the use of samples and experiments; organizing data through graphs and numbers that describe the distribution of the data of one variable or the relationship between two variables; probability; statistical inference including confidence intervals and tests of significance.

MATH 1205 - College Algebra
Credit(s): 3 Credits
Brief review of algebraic essentials, graphs, functions and their graphs, linear and quadratic functions, polynomial and rational functions, exponential and logarithmic functions, systems of linear equations. Intended for students needing more preparation before taking MATH 1320 or MATH 1400. (Offered every Fall, Spring and Summer)

MATH 1240 - Mathematics and the Art of M.C. Escher
Credit(s): 3 Credits
An inquiry course open to all undergraduates. The art of M.C. Escher is used to explore topics in geometry such as symmetry, tessellations, wallpaper patterns, the geometry of the sphere and hyperbolic geometry. Taught in a computer classroom.

MATH 1250 - Math Thinking in Real World
Credit(s): 3 Credits
An inquiry course open to all undergraduates. In this course, aimed at students in the humanities and social sciences, we study some of the greatest ideas of mathematics that are often hidden from view in lower division courses. Topics selected from number theory, the infinite, geometry, topology, chaos and fractals, and probability. Taught in a computer classroom.

MATH 1260 - Statistics Including Sports and Politics
Credit(s): 3 Credits
An inquiry course open to all undergraduates. Producing data through the use of samples and experiments; organizing data through graphs and numbers that describe the distribution of the data of one variable or the relationship between two variables; probability; statistical inference including confidence intervals and tests of significance.

MATH 1300 - Elementary Statistics with Computers
Credit(s): 3 Credits
Data production and analysis; probability basics, distributions; sampling, estimation with confidence intervals, hypothesis testing, t-test; correlation and regression; crosstabulations and chi-square. Students learn to use a statistical package such as SPSS. Credit not given for MATH 1300 and any of the following: STAT 1300 or OPM 2070.

MATH 1350 - Math Thinking in Real World
Credit(s): 3 Credits
An inquiry course open to all undergraduates. In this course, aimed at students in the humanities and social sciences, we study some of the greatest ideas of mathematics that are often hidden from view in lower division courses. Topics selected from number theory, the infinite, geometry, topology, chaos and fractals, and probability. Taught in a computer classroom.

MATH 1360 - Statistics Including Sports and Politics
Credit(s): 3 Credits
An inquiry course open to all undergraduates. Producing data through the use of samples and experiments; organizing data through graphs and numbers that describe the distribution of the data of one variable or the relationship between two variables; probability; statistical inference including confidence intervals and tests of significance.
MATH 1320 - Survey of Calculus
Credit(s): 3 Credits
Linear equations and graphs; functions and graphs; limits; the derivative; rules of differentiation; curve sketching and optimization; antiderivatives; the definite integral; multivariable calculus and partial derivatives. (Offered every Fall, Spring and Summer)
Prerequisite(s): (1 Course from MATH 120-4999 or Math Waiver per Advisor with a minimum score of 1200)
Attributes: Mathematics BA Req (A&S)

MATH 1325 - Survey of Calculus
Credit(s): 3 Credits
Linear equations and graphs; functions and graphs; limits; the derivative; rules of differentiation; curve sketching and optimization; antiderivatives; the definite integral; multivariable calculus and partial derivatives. (Offered every Fall, Spring and Summer)
Prerequisite(s): (1 Course from MATH 120-4999 or Math Waiver per Advisor with a minimum score of 1200)
Attributes: Prof. Studies Students Only

MATH 1400 - Pre-Calculus
Credit(s): 3 Credits
Functions, graphs and models; modeling with linear and quadratic functions; polynomial and rational functions; modeling with exponential and logarithmic functions; trigonometric functions; trigonometric identities and conditional equations; additional topics in trigonometry; additional topics in analytic geometry; parametric equations. (Offered every Fall, Spring and Summer)
Prerequisite(s): (MATH 1200 or Math Waiver per Advisor with a minimum score of 1200)
Attributes: Mathematics BA Req (A&S)

MATH 1510 - Calculus I
Credit(s): 4 Credits
Functions; continuity; limits; the derivative; differentiation from graphical, numerical and analytical viewpoints; optimization and modeling; rates and related rates; the definite integral; antiderivatives from graphical, numerical and analytical viewpoints. (Offered every Fall, Spring and Summer)
Prerequisite(s): (Math Waiver per Advisor with a minimum score of 1400 or MATH 1400 with a grade of C- or higher)
Attributes: Mathematics BA Req (A&S), Mathematics BS Req (A&S)

MATH 1520 - Calculus II
Credit(s): 4 Credits
Symbolic and numerical techniques of integration, improper integrals, applications using the definite integral, sequences and series, power series, Taylor series, differential equations. (Offered every Fall, Spring and Summer)
Prerequisite(s): (Math Waiver per Advisor with a minimum score of 1400 or MATH 1400 with a grade of C- or higher, or AP Calculus AB with a minimum score of 4)
Attributes: Mathematics BA Req (A&S), Mathematics BS Req (A&S)

MATH 1560 - Discrete Mathematics
Credit(s): 3 Credits
Concepts of discrete mathematics used in computer science; sets, sequences, strings, symbolic logic, proofs, mathematical induction, sums and products, number systems, algorithms, complexity, graph theory, finite state machines.
Prerequisite(s): (1 Course from MATH 120-4999 or Math Waiver per Advisor with a minimum score of 1200)
Attributes: Mathematics BA Req (A&S), Mathematics BS Req (A&S)

MATH 1930 - Special Topics
Credit(s): 1-3 Credits (Repeatable for credit)
Attributes: Mathematics BA Req (A&S), Mathematics BS Req (A&S)

MATH 2530 - Calculus III
Credit(s): 4 Credits
Three-dimensional analytic geometry, vector-valued functions, partial differentiation, multiple integration, and line integrals. (Offered every Fall and Spring)
Prerequisite(s): (1 Course from MATH 1520-4999 or Math Waiver per Advisor with a minimum score of 1520)
Attributes: Mathematics BA Req (A&S), Mathematics BS Req (A&S)

MATH 2660 - Principles of Mathematics
Credit(s): 3 Credits
Introduction to the basic techniques of writing proofs and to fundamental ideas used throughout mathematics. Topics covered include formal logic, proof by contradiction, set theory, mathematical induction and recursion, relations and congruence, functions. Offered every Fall and Spring)
Prerequisite(s): (1 Course from MATH 142-4999 or Math Waiver per Advisor with a minimum score of 1510)
Attributes: Mathematics BA Req (A&S), Mathematics BS Req (A&S)

MATH 2690 - Mathematical Problem Solving
Credit(s): 1 Credit
Intended primarily to train students for the William Lowell Putnam Mathematical Competition, this course covers a mélange of ingenious techniques for solving mathematics problems cutting across the entire undergraduate spectrum, including pre-calculus, calculus, combinatorics, probability, inequalities. Coverage tailored to students' interests. Offered every Fall)
Attributes: Mathematics BA Req (A&S), Mathematics BS Req (A&S)

MATH 2980 - Independent Study
Credit(s): 1-4 Credits (Repeatable for credit)
Attributes: Mathematics BA Req (A&S), Mathematics BS Req (A&S)

MATH 3110 - Linear Algebra for Engineers
Credit(s): 3 Credits
Systems of linear equations, matrices, linear programming, determinants, vector spaces, inner product spaces, eigenvalues and eigenvectors, linear transformations, and numerical methods. Credit not given for both MATH 3110 and MATH 3120. Does not satisfy any requirements for the mathematics major. Spring semester.
Prerequisite(s): 1 Course from MATH 1520-4999
MATH 3120 - Introduction to Linear Algebra
Credit(s): 3 Credits
Matrices, row operations with matrices, determinants, systems of linear equations, vector spaces, linear transformations, inner products, eigenvalues and eigenvectors. Credit not given for both MATH 3110 and MATH 3120. (Offered every Fall and Spring)
Prerequisite(s): MATH 2660; MATH 2530

MATH 3230 - Vector Analysis
Credit(s): 3 Credits
Vector algebra, differential and integral calculus of vector functions, linear vector functions and dyadics, applications to geometry, particle and fluid mechanics, theory of vector fields. (Offered periodically)
Prerequisite(s): (MATH 2530 or Math Waiver per Advisor with a minimum score of 2530)

MATH 3240 - Numerical Analysis
Credit(s): 3 Credits
Review of calculus; root finding, nonlinear systems, interpolation and approximation; numerical differentiation and integration.
Prerequisite(s): (MATH 1520 or Math Waiver per Advisor with a minimum score of 1520)

MATH 3270 - Advanced Mathematics for Engineers
Credit(s): 3 Credits
Vector algebra; matrix algebra; systems of linear equations; eigenvalues and eigenvectors; systems of differential equations; vector differential calculus; divergence, gradient and curl; vector integral calculus; integral theorems; Fourier series with applications to partial differential equations. (Offered every Fall and Spring)
Prerequisite(s): MATH 3550

MATH 3270 - Advanced Mathematics for Engineers
Credit(s): 3 Credits
Vector algebra; matrix algebra; systems of linear equations; eigenvalues and eigenvectors; systems of differential equations; vector differential calculus; divergence, gradient and curl; vector integral calculus; integral theorems; Fourier series with applications to partial differential equations. (Offered every Fall and Spring)
Prerequisite(s): MATH 3550

MATH 3280 - Advanced Mathematics for Engineers
Credit(s): 3 Credits
Vector algebra; matrix algebra; systems of linear equations; eigenvalues and eigenvectors; systems of differential equations; vector differential calculus; divergence, gradient and curl; vector integral calculus; integral theorems; Fourier series with applications to partial differential equations. (Offered every Fall and Spring)
Prerequisite(s): MATH 3550

MATH 3300 - Discrete Structures
Credit(s): 3 Credits
Advanced counting methods: permutations and combinations, generalized permutations and combinations, recurrence relations, generating functions; algorithms: graphs and digraphs, graph algorithms: minimum-cost spanning trees, shortest path, network flows; depth first and breadth-first searches; combinational algorithms: resource scheduling, bin-packing: algorithmic analysis and NP completeness.
Prerequisite(s): (1 Course from MATH 1150-4999 or Math Waiver per Advisor with a minimum score of 115)

MATH 3370 - Financial Mathematics
Credit(s): 3 Credits
This course covers the theory of interest material for the Financial Mathematics exam of the Society of Actuaries. Time permitting, supplemental material covering financial derivatives will be discussed.
Prerequisite(s): MATH 1520

MATH 3400 - Probability and Statistics for Engineers
Credit(s): 3 Credits
Analyzing and producing data; probability; random variables; probability distributions; expectation; sampling distributions; confidence intervals; hypothesis testing; experimental design; regression and correlation analysis. Credit not given toward the math major or minors for both MATH 3810 and either MATH 3800 or MATH 3850. (Offered every Fall and Spring)
Prerequisite(s): MATH 2530

MATH 3450 - History of Mathematics
Credit(s): 3 Credits
The development of several important branches of mathematics, including numeration and computation, algebra, non-Euclidean geometry, and calculus. (Offered periodically)
Prerequisite(s): 1 Course from MATH 1520-4999

MATH 3500 - Elementary Theory of Probability
Credit(s): 3 Credits
Counting theory; axiomatic probability, random variables, expectation, limit theorems. Applications of the theory of probability to a variety of practical problems. Credit not given toward the math major or minors for both MATH 3800 and either MATH 3810 or MATH 4800. (Offered every Fall)
Prerequisite(s): MATH 2530

MATH 3550 - Differential Equations
Credit(s): 3 Credits
Solution of ordinary differential equations, higher order linear equations, constant coefficient equations, systems of first order equations, linear systems, equilibrium of nonlinear systems, Laplace transformations.
Prerequisite(s): (MATH 2530 or Math Waiver per Advisor with a minimum score of 2530)

MATH 3600 - Combinatorics
Credit(s): 3 Credits
Advanced counting methods: permutations and combinations, generalized permutations and combinations, recurrence relations, generating functions; algorithms: graphs and digraphs, graph algorithms: minimum-cost spanning trees, shortest path, network flows; depth first and breadth-first searches; combinational algorithms: resource scheduling, bin-packing: algorithmic analysis and NP completeness.
Prerequisite(s): (1 Course from MATH 1150-4999 or Math Waiver per Advisor with a minimum score of 115)

MATH 3800 - Elementary Theory of Probability
Credit(s): 3 Credits
Counting theory; axiomatic probability, random variables, expectation, limit theorems. Applications of the theory of probability to a variety of practical problems. Credit not given toward the math major or minors for both MATH 3800 and either MATH 3810 or MATH 4800. (Offered every Fall)
Prerequisite(s): MATH 2530

MATH 3810 - Probability and Statistics for Engineers
Credit(s): 3 Credits
Analyzing and producing data; probability; random variables; probability distributions; expectation; sampling distributions; confidence intervals; hypothesis testing; experimental design; regression and correlation analysis. Credit not given toward the math major or minors for both MATH 3810 and either MATH 3800 or MATH 3850. (Offered every Fall and Spring)
Prerequisite(s): MATH 2530

MATH 3850 - Foundation of Statistics
Credit(s): 3 Credits
Descriptive statistics, probability distributions, random variables, expectation, independence, hypothesis testing, confidence intervals, regression and ANOVA. Applications and theory. Taught using statistical software. Credit not given toward the math major or minors for both MATH 3810 / STAT 3810 and MATH 3850 / STAT 3850.
Prerequisite(s): MATH 1520

MATH 3910 - Internship
Credit(s): 1-6 Credits (Repeatable for credit)

MATH 3930 - Special Topics
Credit(s): 0-3 Credits (Repeatable for credit)

MATH 3980 - Independent Study
Credit(s): 1-3 Credits (Repeatable for credit)

MATH 4050 - History of Mathematics
Credit(s): 3 Credits
The development of several important branches of mathematics, including numeration and computation, algebra, non-Euclidean geometry, and calculus. (Offered periodically)
Prerequisite(s): 1 Course from MATH 1520-4999

MATH 4110 - Introduction to Abstract Algebra
Credit(s): 3 Credits
Elementary properties of the integers, sets and mappings, groups, rings, integral domains, division rings and fields. (Offered every Fall)
Prerequisite(s): MATH 3120

MATH 4120 - Linear Algebra
Credit(s): 3 Credits
Advanced linear algebra, including linear transformations and duality, elementary canonical forms, rational and Jordan forms, inner product spaces, unitary operators, normal operators and spectral theory. (Offered every Spring)
Prerequisite(s): MATH 4110

MATH 4170 - Number Theory
Credit(s): 3 Credits
Introduction to algebraic number theory. Topics will include primes, Chinese remainder theorem, Diophantine equations, algebraic numbers and quadratic residues. Additional topics will vary from year to year. (Offered periodically)
Prerequisite(s): MATH 4110

MATH 4180 - Number Theory
Credit(s): 3 Credits
Introduction to algebraic number theory. Topics will include primes, Chinese remainder theorem, Diophantine equations, algebraic numbers and quadratic residues. Additional topics will vary from year to year. (Offered periodically)
Prerequisite(s): MATH 4110
MATH 4210 - Introduction to Analysis
Credit(s): 3 Credits
Real number system, functions, sequences, limits, continuity, differentiation, integration and series. (Offered every Fall)
Prerequisite(s): MATH 2530; MATH 3120 with a grade of C- or higher

MATH 4220 - Metric Spaces
Credit(s): 3 Credits
Set theory, metric spaces, completeness, compactness, connected sets, category. (Offered every Spring)
Prerequisite(s): MATH 4210

MATH 4230 - Multivariable Analysis
Credit(s): 3 Credits
Introduction to analysis in multidimensional Euclidean space. Sequences and Series of functions, Differentiability, Integrability, Inverse and Implicit function theorems, Fundamental Theorems of Multivariable Calculus (Green's Theorem, Stokes' Theorem, Divergence Theorem). (Offered every Spring)
Prerequisite(s): MATH 4210

MATH 4310 - Introduction to Complex Variables
Credit(s): 3 Credits
Complex number system and its operations, limits and sequences, continuous functions and their properties, conformal representation, curvilinear and complex integration, Cauchy integral theorems, power series and singularities. (Offered every Fall)
Prerequisite(s): (MATH 2530 or Math Waiver per Advisor with a minimum score of 2530)

MATH 4320 - Complex Variables II
Credit(s): 3 Credits
This course is a continuation of MATH 4310. Topics covered include series, residues and poles, conformal mapping, integral formulas, analytic continuation, and Riemann surfaces. (Offered every Spring)
Prerequisite(s): MATH 4310

MATH 4360 - Geometric Topology
Credit(s): 3 Credits
An introduction to the geometry and topology of surfaces and three dimensional spaces. Topics covered include Euclidean, spherical and hyperbolic geometry, topology of surfaces, knot theory, and the fundamental group.

MATH 4410 - Foundations of Geometry
Credit(s): 3 Credits
Historical background of the study of Euclidean geometry; development of two-dimensional Euclidean geometry from a selected set of postulates. (Offered periodically)
Prerequisite(s): (1 Course from MATH 142-4999 or Math Waiver per Advisor with a minimum score of 1510)

MATH 4420 - Metric Spaces
Credit(s): 3 Credits
Set theory, metric spaces, completeness, compactness, connected sets, category. (Offered every Spring)
Prerequisite(s): MATH 4210

MATH 4480 - Differential Geometry
Credit(s): 3 Credits
Classical theory of smooth curves and surfaces in 3-space. Curvature and torsion of space curves, Gaussian curvature of surfaces, the Theorema Egregium of Gauss. (Offered occasionally)
Prerequisite(s): MATH 2530

MATH 4550 - Nonlinear Dynamics and Chaos
Credit(s): 3 Credits
Bifurcation in one-dimensional flows. Two-dimensional flows, fixed points and linearization, conservative systems, index theory, limit cycles. Poincaré–Bendixson theory, bifurcations. Chaos, the Lorenz equation, discrete maps, fractals, and strange attractors.
Prerequisite(s): MATH 3550

MATH 4570 - Partial Differential Equations
Credit(s): 3 Credits
Fourier series, Fourier Integrals, the heat equation, Sturm-Liouville problems, the wave equation, the potential equation, problems in several dimensions, Laplace transforms numerical methods.
Prerequisite(s): MATH 3550

MATH 4630 - Graph Theory
Credit(s): 3 Credits
Basic definitions and concepts, undirected graphs (trees and graphs with cycles), directed graphs, and operation on graphs, Euler's formula, and surfaces. (Offered periodically)
Prerequisite(s): (MATH 2530 or Math Waiver per Advisor with a minimum score of 2530)

MATH 4650 - Cryptography
Credit(s): 3 Credits
Classical cryptographic systems, public key cryptography, symmetric block ciphers, implementation issues. Related and supporting mathematical concepts and structures.
Prerequisite(s): MATH 1520

MATH 4660 - Statistical Models
Credit(s): 3 Credits
Poisson processes, Markov chains, hidden Markov models, continuous time Markov chains, queuing theory. Theory and applications, taught with statistical software.
Prerequisite(s): MATH 4800
MATH 5110 - Introduction to Abstract Algebra
Credit(s): 3 Credits
Elementary properties of the integers, sets and mappings, groups, rings, integral domains, division rings and fields.

MATH 5111 - Introduction to Abstract Algebra
Credit(s): 3 Credits
Elementary properties of the integers, sets and mappings, groups, rings, integral domains, division rings and fields.

MATH 5120 - Algebra I
Credit(s): 3 Credits
Credit(s): 3 Credits
Simple properties of groups, subgroups, homomorphisms and isomorphisms, theorems of Schreier and Jordan-Hölder, mappings into a group, rings, integral domains, fields, polynomials, direct sums and modules. (Offered every Fall)

MATH 5120 - Algebra II
Credit(s): 3 Credits
Rings, fields, bases and degrees of extension fields, transcendental elements, normal fields and their structures. Galois theory, finite fields; solutions of equations by radicals, general equations of degree n. (Offered every Spring)

MATH 5210 - Real Analysis
Credit(s): 3 Credits
The topology of the reals, Lebesgue and Borel measurable functions, properties of the Lebesgue integral, differential of the integral. Offered every Fall semester.

MATH 5220 - Complex Analysis
Credit(s): 3 Credits
Holomorphic and Harmonic functions and power series expansions. Complex integration. Cauchy's theorem and applications. Laurent series, singularities, Runge's theorem, and the calculus of residues. Additional topics may include Analytic continuation, Riemann surfaces, and conformal mapping. (Offered periodically)

MATH 5230 - Functional Analysis
Credit(s): 3 Credits
Banach and Hilbert spaces. Linear functions and linear operators. Dual spaces, weak and weak topologies. Hahn-Banach, Closed Graph and Open Mapping Theorems. Topological Vector spaces. (Offered periodically)

MATH 5240 - Harmonic Analysis
Credit(s): 3 Credits
Fourier Series on the circle, Convergence of Fourier series, Conjugate and maximal functions, Interpolation of Linear Operators, Lacunary Sequences, Fourier Transform on the line, Fourier transform on locally compact Abelian groups.

MATH 5250 - Advanced Topics in Mathematics
Credit(s): 3 Credits
Solutions of equations by radicals, general equations of degree n. (Offered every Spring)

MATH 5260 - Advanced Topics in Mathematics
Credit(s): 3 Credits
Banach and Hilbert spaces. Linear functions and linear operators. Dual spaces, weak and weak topologies. Hahn-Banach, Closed Graph and OpenMapping Theorems. Topological Vector spaces. (Offered periodically)

MATH 5310 - General Topology I
Credit(s): 3 Credits
Topological spaces, convergence, nets, product spaces, metrization, compact spaces, connected spaces. (Offered every Fall)

MATH 5320 - General Topology II
Credit(s): 3 Credits
Compact surfaces, fundamental groups, force groups and free products, Seifert-van Kampen theorem, covering spaces. Offered every Spring semester.

MATH 5320 - General Topology II
Credit(s): 3 Credits
Compact surfaces, fundamental groups, force groups and free products, Seifert-van Kampen theorem, covering spaces. Offered every Spring semester.

MATH 5320 - General Topology II
Credit(s): 3 Credits
Compact surfaces, fundamental groups, force groups and free products, Seifert-van Kampen theorem, covering spaces. Offered every Spring semester.

MATH 5320 - General Topology II
Credit(s): 3 Credits
Compact surfaces, fundamental groups, force groups and free products, Seifert-van Kampen theorem, covering spaces. Offered every Spring semester.

MATH 5320 - General Topology II
Credit(s): 3 Credits
Compact surfaces, fundamental groups, force groups and free products, Seifert-van Kampen theorem, covering spaces. Offered every Spring semester.

MATH 5930 - Special Topics in Mathematics
Credit(s): 3 Credits
Credit(s): 3 Credits
Solutions of equations by radicals, general equations of degree n. (Offered every Spring)

MATH 5930 - Special Topics in Mathematics
Credit(s): 3 Credits
Credit(s): 3 Credits
Solutions of equations by radicals, general equations of degree n. (Offered every Spring)

MATH 5980 - Graduate Reading Course
Credit(s): 1-3 Credits
Credit(s): 1-3 Credits
Prior permission of instructor and chairperson required.

MATH 5980 - Graduate Reading Course
Credit(s): 1-3 Credits
Credit(s): 1-3 Credits
Prior permission of instructor and chairperson required.

MATH 6110 - Algebra III
Credit(s): 3 Credits
Categories and functors, properties of Hom and Tensor, projective and injective modules, chain conditions, decomposition and cancellation of modules, theorems of Masche, Wedderburn, and Artin-Wedderburn, tensor algebras. Offered every other year.

Prerequisite(s): MATH 5120
MATH 6180 - Topics in Algebra
Credit(s): 3 Credits
Various topics are discussed to bring graduate students to the forefront of a research area in algebra. Times of offering in accordance with research interests of faculty. Offered occasionally.

MATH 6210 - Lie Groups and Lie Algebras
Credit(s): 3 Credits
Lie groups and Lie algebras, matrix groups, the Lie algebra of a Lie group homogeneous spaces, solvable and nilpotent groups, semi-simple Lie groups. Offered every other year.
Prerequisite(s): MATH 5110; MATH 5220; MATH 5310

MATH 6220 - Rep Theory of Lie Groups
Credit(s): 3 Credits
Representation theory of Lie groups, irreducibility and complete reducibility, Cartan subalgebra and root space decomposition, root system and classification, coadjoint orbits, harmonic analysis on homogeneous spaces. Offered every other year.
Prerequisite(s): MATH 6210

MATH 6280 - Topics in Analysis
Credit(s): 3 Credits (Repeatable for credit)
Various topics are offered to bring graduate students to the forefront of a research area in analysis. Times of offering in accordance with research interests of faculty. Offered occasionally.
Prerequisite(s): MATH 5220

MATH 6310 - Algebraic Topology
Credit(s): 3 Credits
Homotopy theory, homology theory, exact sequences, Mayer-Vietoris sequences, degrees of maps, cohomology, Künneth formula, cup and cap products, applications to manifolds including Poincaré-Lefshetz duality. Offered every other year.
Prerequisite(s): MATH 5320

MATH 6320 - Topology of Manifolds
Credit(s): 3 Credits
Examples of manifolds, the tangent bundle, maps between manifolds, embeddings, critical values, transversality, isotopies, vector bundles and tubular neighborhoods, cobordism, intersection numbers and Euler characteristics. May be taught in either the piecewise linear or differentiable categories. Offered every other year.
Prerequisite(s): MATH 6310

MATH 6380 - Topics in Topology
Credit(s): 3 Credits (Repeatable for credit)
Various topics are offered to bring graduate students to the forefront of a research area in topology. Times of offering in accordance with research interests of faculty. Offered occasionally.

MATH 6410 - Differential Geometry I
Credit(s): 3 Credits
The theory of differentiable manifolds, topological manifolds, differential calculus of several variables, smooth manifolds and submanifolds, vector fields and ordinary differential equations, tensor fields, integration and De Rham cohomology. Offered every Fall semester.

MATH 6420 - Differential Geometry II
Credit(s): 3 Credits
Continuation of MATH-6410. (Offered every Spring)
Prerequisite(s): MATH 6410

MATH 6480 - Topics in Geometry
Credit(s): 3 Credits
Various topics are offered to bring graduate students to the forefront of a research area in geometry. Times of offering in accordance with research interests of faculty. Offered occasionally.
Prerequisite(s): MATH 5320

MATH 6930 - Special Topics
Credit(s): 3 Credits (Repeatable for credit)

MATH 6980 - Graduate Reading Course
Credit(s): 1-3 Credits (Repeatable for credit)
Prior permission of instructor and chairperson required.

MATH 6990 - Dissertation Research
Credit(s): 0-6 Credits (Repeatable for credit)