Chemistry, Ph.D.

Saint Louis University’s Chemistry Ph.D. program offers specializations, including traditional areas of analytical, physical, organic and inorganic chemistry, as well as cross-disciplinary areas of materials and biological chemistry. Students must complete intensive research culminating in a dissertation.  

Program Highlights

The chemistry program offers students:

  • Close mentoring relationships
  • Small research group size
  • Opportunities to participate in interdisciplinary research

Graduate students in SLU's Department of Chemistry have access to a number of research tools, including:

  • Bruker 400 and 700 MHz NMR spectrometers
  • Bruker-EMX EPR, UV-Vis and FTIR spectrometers
  • Research-grade spectrofluorometers
  • GC-MS and LC-MS
  • Electrochemical analyzers
  • Gas chromatographs
  • A scanning electron micrograph
  • Computational facilities with modern molecular software
  • A Bruker CCD X-ray diffractometer facility

Curriculum Overview

SLU's Ph.D. in chemistry requires a minimum of 39 post-baccalaureate credits, with at least 27 credits of coursework and 12 credits of dissertation research.

Graduate Handbook

Fieldwork and Research Opportunities

Our graduate students are active in the research areas of analytical, organic, physical, synthetic, materials, environmental and biological chemistry. Our research groups regularly publish in top-ranked journals and present at national and international conferences.

Research is externally supported by the U.S. Air Force Office of Scientific Research, National Institutes of Health, National Science Foundation, Petroleum Research Fund and the American Heart Association, among others.


Doctoral graduates pursue different paths, including teaching, postdoctoral studies or careers in industry or with government agencies, such as the FDA.

Past students from SLU's chemistry Ph.D. program have gone on to careers as research scientists, teachers, university faculty and in various capacities in pharmaceutical companies and government agencies.

Admission Requirements

Applicants should possess sufficient GPA and TOEFL (if applicable) scores and a bachelor's degree from an accredited college or university. Bachelor's degrees usually are in chemistry or biochemistry, although other science majors will be considered.

Admission typically requires a minimum of 18 semester credits (minimum 2.8 GPA) of upper-division undergraduate chemistry courses, including organic chemistry (two semesters), quantitative analysis (one semester) and physical chemistry (two semesters). Students who do not meet these criteria may complete these prerequisites as part of their graduate program, though not for graduate credit.

Students who have not completed equivalent coursework in upper-level undergraduate Inorganic Chemistry and Instrumental Analysis will also be required to complete these courses, but they can be taken for departmental graduate credit.

Application Requirements

  • Application form 
  • Three letters of recommendation
  • Résumé
  • Goal statement
  • Interview (desired)

Requirements for International Students

All admission policies and requirements for domestic students apply to international students, along with the following:

  • Demonstrate English Language Proficiency
  • Proof of financial support must include:
    • A letter of financial support from the person(s) or sponsoring agency funding the time at Saint Louis University
    • A letter from the sponsor's bank verifying that the funds are available and will be so for the duration of study at the University
  • Academic records, in English translation, of students who have undertaken postsecondary studies outside the United States must include the courses taken and/or lectures attended, practical laboratory work, the maximum and minimum grades attainable, the grades earned or the results of all end-of-term examinations, and any honors or degrees received. WES and ECE transcripts are accepted.

Application Deadlines

Students who want to be considered for the summer and fall semesters must submit applications by Jan. 15. Students who want to be considered for the spring semester should apply by Oct. 1.

Review Process

A three-person committee votes on whether to accept applicants.


Tuition Cost Per Credit
Graduate Tuition $1,310

Additional charges may apply. Other resources are listed below:

Net Price Calculator

Information on Tuition and Fees

Miscellaneous Fees

Information on Summer Tuition

Scholarships, Assistantships and Financial Aid

For priority consideration for a graduate assistantship, apply by the program admission deadlines listed. Fellowships and assistantships provide a stipend and may include health insurance and a tuition scholarship for the duration of the award. 

Explore Scholarships and Financial Aid Options

  1. Graduates will be able to demonstrate advanced level knowledge in both
    1. synthesis and materials chemistry and
    2. analytical and physical chemistry methods, with a higher level of knowledge expected in the student’s area of research.
  2. Graduates will be able to use standard search tools and retrieval methods to obtain information about a topic, substance, technique or issue relating to chemistry and assess relevant studies from the chemical literature.
  3. Graduates will be able to communicate scientific findings from literature and original findings from the student's own independent research in written publications and oral presentations.
  4. Graduates will be able to acquire the basic tools, including chemical practices and theories, needed to conduct advanced chemical research. Students will become proficient in their specialized area of chemistry and complete an advanced, independent research project resulting in peer-reviewed publications.
  5. Graduates will be able to adhere to accepted ethical and professional standards in chemistry.
Graduate Chemistry Courses12
Select four of the following:
Advanced Synthetic Chemistry
Analytical Chemistry II
Mass Spectrometry
Analytical Separations
Electroanalytical Chemistry
Mathematical Techniques in Chemistry
Computational Chemistry
Special Topics: Physical Chemistry
Organic Spectroscopy
Bioorganic Chemistry
Advanced Organic Chemistry
Synthetic Organic Chemistry
Principles of Medicinal Chemistry
Inorganic Chemistry
Organometallic Chemistry
Solid State Chemistry
Group Theory & Spectroscopy
Biochemistry 1
Biochemistry 2
Biophysical Chemistry
Introduction to Chemical Biology and Biotechnology
Fundamentals and Design of Nanomaterials
Required Research Courses
CHEM 5970Research Topics3
CHEM 6900Introduction to Proposal Writing and Oral Presentations3
CHEM 6990Dissertation Research (taken over multiple semesters)12
Research Elective 3
Select one of the following:
Introduction to Analytical Research
Introduction to Physical Research
Introduction to Organic Research
Introduction to Inorganic Research
Chemistry Electives6
Select two additional graduate chemistry courses from those listed above OR electives can also be fulfilled by taking 5000-level courses in other disciplines such as biology, math, computer science, engineering, and pharmacology with approval by Graduate Program Coordinator and student’s committee.
Total Credits39

Non-Course Requirements

  • Completion of research progress exam
  • Completion of written comprehensive exam
  • Completion of oral defense of research proposal
  • A public oral presentation and a private oral examination

Continuation Standards

Students must maintain a cumulative grade point average (GPA) of 3.00 in all graduate/professional courses.

Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.  

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

Plan of Study Grid
Year One
Graduate Chemistry course 3
Graduate Chemistry course 3
Graduate Chemistry course 3
Graduate Chemistry course 3
CHEM 5299
Introduction to Analytical Research
or Introduction to Physical Research
or Introduction to Organic Research
or Introduction to Inorganic Research
CHEM 5970 Research Topics 3
Year Two
Chemistry elective(s) 3-6
Completion of Research Progress Exam  
Chemistry elective 3-0
CHEM 6990 Dissertation Research 3
Year Three
Completion of Written Comprehensive Exam  
CHEM 6900 Introduction to Proposal Writing and Oral Presentations 3
CHEM 6990 Dissertation Research 1
CHEM 6990 Dissertation Research 2
CHEM 6990 Dissertation Research 1
Year Four
CHEM 6990 Dissertation Research 1
CHEM 6990 Dissertation Research 1
CHEM 6990 Dissertation Research 1
Year Five
CHEM 6990 Dissertation Research 1
CHEM 6990 Dissertation Research 1
 Total Credits39

Students are required to complete a minimum of 12 credits of dissertation research. The number of credits can vary each semester, but a student cannot register for zero credits of research until the 12 credits have been completed.

For additional information about our program, please contact:

Marvin Meyers, Ph.D.
Chemistry Graduate Program Coordinator